Internal
problem
ID
[15339]
Book
:
Ordinary
Differential
Equations.
An
introduction
to
the
fundamentals.
Kenneth
B.
Howell.
second
edition.
CRC
Press.
FL,
USA.
2020
Section
:
Chapter
21.
Nonhomogeneous
equations
in
general.
Additional
exercises
page
391
Problem
number
:
21.10
Date
solved
:
Thursday, March 13, 2025 at 05:55:19 AM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
With initial conditions
ode:=diff(diff(y(x),x),x)+6*diff(y(x),x)+9*y(x) = 169*sin(2*x); ic:=y(0) = -10, D(y)(0) = 9; dsolve([ode,ic],y(x), singsol=all);
ode=D[y[x],{x,2}]+6*D[y[x],x]+9*y[x]==169*Sin[2*x]; ic={y[0]==-10,Derivative[1][y][0] ==9}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(9*y(x) - 169*sin(2*x) + 6*Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) ics = {y(0): -10, Subs(Derivative(y(x), x), x, 0): 9} dsolve(ode,func=y(x),ics=ics)