73.25.32 problem 35.5 (d)

Internal problem ID [15740]
Book : Ordinary Differential Equations. An introduction to the fundamentals. Kenneth B. Howell. second edition. CRC Press. FL, USA. 2020
Section : Chapter 35. Modified Power series solutions and basic method of Frobenius. Additional Exercises. page 715
Problem number : 35.5 (d)
Date solved : Tuesday, January 28, 2025 at 08:06:21 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} \left (x -3\right )^{2} y^{\prime \prime }+\left (x^{2}-3 x \right ) y^{\prime }-3 y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 3 \end{align*}

Solution by Maple

Time used: 0.067 (sec). Leaf size: 52

Order:=6; 
dsolve((x-3)^2*diff(y(x),x$2)+(x^2-3*x)*diff(y(x),x)-3*y(x)=0,y(x),type='series',x=3);
 
\[ y = \frac {c_{1} \left (x -3\right )^{4} \left (1-\frac {1}{5} \left (x -3\right )+\frac {1}{30} \left (x -3\right )^{2}-\frac {1}{210} \left (x -3\right )^{3}+\frac {1}{1680} \left (x -3\right )^{4}-\frac {1}{15120} \left (x -3\right )^{5}+\operatorname {O}\left (\left (x -3\right )^{6}\right )\right )+c_{2} \left (-144+144 \left (x -3\right )-72 \left (x -3\right )^{2}+24 \left (x -3\right )^{3}-6 \left (x -3\right )^{4}+\frac {6}{5} \left (x -3\right )^{5}+\operatorname {O}\left (\left (x -3\right )^{6}\right )\right )}{\left (x -3\right )^{3}} \]

Solution by Mathematica

Time used: 0.023 (sec). Leaf size: 81

AsymptoticDSolveValue[(x-3)^2*D[y[x],{x,2}]+(x^2-3*x)*D[y[x],x]-3*y[x]==0,y[x],{x,3,"6"-1}]
 
\[ y(x)\to c_1 \left (\frac {x-3}{24}+\frac {1}{2 (x-3)}-\frac {1}{(x-3)^2}+\frac {1}{(x-3)^3}-\frac {1}{6}\right )+c_2 \left (\frac {(x-3)^5}{1680}-\frac {1}{210} (x-3)^4+\frac {1}{30} (x-3)^3-\frac {1}{5} (x-3)^2+x-3\right ) \]