73.15.27 problem 22.9 (e)

Internal problem ID [15379]
Book : Ordinary Differential Equations. An introduction to the fundamentals. Kenneth B. Howell. second edition. CRC Press. FL, USA. 2020
Section : Chapter 22. Method of undetermined coefficients. Additional exercises page 412
Problem number : 22.9 (e)
Date solved : Thursday, March 13, 2025 at 05:57:05 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime }-6 y^{\prime }+9 y&=10 \,{\mathrm e}^{3 x} \end{align*}

Maple. Time used: 0.006 (sec). Leaf size: 19
ode:=diff(diff(y(x),x),x)-6*diff(y(x),x)+9*y(x) = 10*exp(3*x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = {\mathrm e}^{3 x} \left (c_{1} x +5 x^{2}+c_{2} \right ) \]
Mathematica. Time used: 0.023 (sec). Leaf size: 23
ode=D[y[x],{x,2}]-6*D[y[x],x]+9*y[x]==10*Exp[3*x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to e^{3 x} \left (5 x^2+c_2 x+c_1\right ) \]
Sympy. Time used: 0.207 (sec). Leaf size: 15
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(9*y(x) - 10*exp(3*x) - 6*Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \left (C_{1} + x \left (C_{2} + 5 x\right )\right ) e^{3 x} \]