73.27.17 problem 38.10 (k)

Internal problem ID [15773]
Book : Ordinary Differential Equations. An introduction to the fundamentals. Kenneth B. Howell. second edition. CRC Press. FL, USA. 2020
Section : Chapter 38. Systems of differential equations. A starting point. Additional Exercises. page 786
Problem number : 38.10 (k)
Date solved : Tuesday, January 28, 2025 at 08:06:57 AM
CAS classification : system_of_ODEs

\begin{align*} \frac {d}{d t}x \left (t \right )&=4 x \left (t \right )-13 y \left (t \right )\\ \frac {d}{d t}y \left (t \right )&=x \left (t \right )+19 \cos \left (4 t \right )-13 \sin \left (4 t \right ) \end{align*}

With initial conditions

\begin{align*} x \left (0\right ) = 13\\ y \left (0\right ) = 0 \end{align*}

Solution by Maple

Time used: 1.132 (sec). Leaf size: 26

dsolve([diff(x(t),t) = 4*x(t)-13*y(t), diff(y(t),t) = x(t)+19*cos(4*t)-13*sin(4*t), x(0) = 13, y(0) = 0], singsol=all)
 
\begin{align*} x \left (t \right ) &= 13 \sin \left (4 t \right )+13 \cos \left (4 t \right ) \\ y \left (t \right ) &= 8 \sin \left (4 t \right ) \\ \end{align*}

Solution by Mathematica

Time used: 0.319 (sec). Leaf size: 554

DSolve[{D[x[t],t]==4*x[t]-13*y[t],D[y[t],t]==x[t]+19*Cos[4*t]-13*Sin[4*t]},{x[0]==13,y[0]==0},{x[t],y[t]},t,IncludeSingularSolutions -> True]
 
\begin{align*} x(t)\to \frac {1}{3} e^{2 t} \left (-\left ((2 \sin (3 t)+3 \cos (3 t)) \int _1^0\frac {13}{3} e^{-2 K[1]} \sin (3 K[1]) (19 \cos (4 K[1])-13 \sin (4 K[1]))dK[1]\right )+(2 \sin (3 t)+3 \cos (3 t)) \int _1^t\frac {13}{3} e^{-2 K[1]} \sin (3 K[1]) (19 \cos (4 K[1])-13 \sin (4 K[1]))dK[1]+13 \left (\sin (3 t) \int _1^0\frac {1}{3} e^{-2 K[2]} (3 \cos (3 K[2])+2 \sin (3 K[2])) (19 \cos (4 K[2])-13 \sin (4 K[2]))dK[2]-\sin (3 t) \int _1^t\frac {1}{3} e^{-2 K[2]} (3 \cos (3 K[2])+2 \sin (3 K[2])) (19 \cos (4 K[2])-13 \sin (4 K[2]))dK[2]+2 \sin (3 t)+3 \cos (3 t)\right )\right ) \\ y(t)\to \frac {1}{3} e^{2 t} \left (\sin (3 t) \left (-\int _1^0\frac {13}{3} e^{-2 K[1]} \sin (3 K[1]) (19 \cos (4 K[1])-13 \sin (4 K[1]))dK[1]\right )+\sin (3 t) \int _1^t\frac {13}{3} e^{-2 K[1]} \sin (3 K[1]) (19 \cos (4 K[1])-13 \sin (4 K[1]))dK[1]+2 \sin (3 t) \int _1^0\frac {1}{3} e^{-2 K[2]} (3 \cos (3 K[2])+2 \sin (3 K[2])) (19 \cos (4 K[2])-13 \sin (4 K[2]))dK[2]-2 \sin (3 t) \int _1^t\frac {1}{3} e^{-2 K[2]} (3 \cos (3 K[2])+2 \sin (3 K[2])) (19 \cos (4 K[2])-13 \sin (4 K[2]))dK[2]-3 \cos (3 t) \int _1^0\frac {1}{3} e^{-2 K[2]} (3 \cos (3 K[2])+2 \sin (3 K[2])) (19 \cos (4 K[2])-13 \sin (4 K[2]))dK[2]+3 \cos (3 t) \int _1^t\frac {1}{3} e^{-2 K[2]} (3 \cos (3 K[2])+2 \sin (3 K[2])) (19 \cos (4 K[2])-13 \sin (4 K[2]))dK[2]+13 \sin (3 t)\right ) \\ \end{align*}