73.28.4 problem 39.1 (d)

Internal problem ID [15779]
Book : Ordinary Differential Equations. An introduction to the fundamentals. Kenneth B. Howell. second edition. CRC Press. FL, USA. 2020
Section : Chapter 39. Critical points, Direction fields and trajectories. Additional Exercises. page 815
Problem number : 39.1 (d)
Date solved : Tuesday, January 28, 2025 at 08:07:03 AM
CAS classification : system_of_ODEs

\begin{align*} \frac {d}{d t}x \left (t \right )&=x \left (t \right ) y \left (t \right )-6 y \left (t \right )\\ \frac {d}{d t}y \left (t \right )&=x \left (t \right )-y \left (t \right )-5 \end{align*}

Solution by Maple

dsolve([diff(x(t),t)=x(t)*y(t)-6*y(t),diff(y(t),t)=x(t)-y(t)-5],singsol=all)
 
\[ \text {No solution found} \]

Solution by Mathematica

Time used: 0.000 (sec). Leaf size: 0

DSolve[{D[x[t],t]==x[t]*y[t]-6*y[t],D[y[t],t]==x[t]-y[t]-5},{x[t],y[t]},t,IncludeSingularSolutions -> True]
 

Not solved