74.1.3 problem 4

Internal problem ID [15783]
Book : INTRODUCTORY DIFFERENTIAL EQUATIONS. Martha L. Abell, James P. Braselton. Fourth edition 2014. ElScAe. 2014
Section : Chapter 1. Introduction to Differential Equations. Exercises 1.1, page 10
Problem number : 4
Date solved : Tuesday, January 28, 2025 at 08:07:09 AM
CAS classification : [[_3rd_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime \prime }-2 y^{\prime \prime }+5 y^{\prime }+y&={\mathrm e}^{x} \end{align*}

Solution by Maple

Time used: 0.007 (sec). Leaf size: 251

dsolve(diff(y(x),x$3)-2*diff(y(x),x$2)+5*diff(y(x),x)+y(x)=exp(x),y(x), singsol=all)
 
\[ y = \frac {{\mathrm e}^{x}}{5}+c_{1} {\mathrm e}^{\frac {\left (15 \sqrt {69}\, \left (404+60 \sqrt {69}\right )^{{2}/{3}}-101 \left (404+60 \sqrt {69}\right )^{{2}/{3}}-484 \left (404+60 \sqrt {69}\right )^{{1}/{3}}+1936\right ) x}{2904}}+c_{2} {\mathrm e}^{-\frac {\left (15 \sqrt {69}\, \left (404+60 \sqrt {69}\right )^{{2}/{3}}-101 \left (404+60 \sqrt {69}\right )^{{2}/{3}}-484 \left (404+60 \sqrt {69}\right )^{{1}/{3}}-3872\right ) x}{5808}} \cos \left (\frac {\left (404+60 \sqrt {3}\, \sqrt {23}\right )^{{1}/{3}} \sqrt {3}\, \left (15 \left (404+60 \sqrt {3}\, \sqrt {23}\right )^{{1}/{3}} \sqrt {3}\, \sqrt {23}-101 \left (404+60 \sqrt {3}\, \sqrt {23}\right )^{{1}/{3}}+484\right ) x}{5808}\right )+c_{3} {\mathrm e}^{-\frac {\left (15 \sqrt {69}\, \left (404+60 \sqrt {69}\right )^{{2}/{3}}-101 \left (404+60 \sqrt {69}\right )^{{2}/{3}}-484 \left (404+60 \sqrt {69}\right )^{{1}/{3}}-3872\right ) x}{5808}} \sin \left (\frac {\left (404+60 \sqrt {3}\, \sqrt {23}\right )^{{1}/{3}} \sqrt {3}\, \left (15 \left (404+60 \sqrt {3}\, \sqrt {23}\right )^{{1}/{3}} \sqrt {3}\, \sqrt {23}-101 \left (404+60 \sqrt {3}\, \sqrt {23}\right )^{{1}/{3}}+484\right ) x}{5808}\right ) \]

Solution by Mathematica

Time used: 0.358 (sec). Leaf size: 504

DSolve[D[y[x],{x,3}]-2*D[y[x],{x,2}]+5*D[y[x],x]+y[x]==Exp[x],y[x],x,IncludeSingularSolutions -> True]
 
\[ y(x)\to \exp \left (x \text {Root}\left [\text {$\#$1}^3-2 \text {$\#$1}^2+5 \text {$\#$1}+1\&,3\right ]\right ) \int _1^x\frac {i \exp \left (\text {Root}\left [\text {$\#$1}^3-2 \text {$\#$1}^2+5 \text {$\#$1}+1\&,2\right ] K[3]+\text {Root}\left [\text {$\#$1}^3-2 \text {$\#$1}^2+5 \text {$\#$1}+1\&,1\right ] K[3]-K[3]\right ) \left (\text {Root}\left [\text {$\#$1}^3-2 \text {$\#$1}^2+5 \text {$\#$1}+1\&,1\right ]-\text {Root}\left [\text {$\#$1}^3-2 \text {$\#$1}^2+5 \text {$\#$1}+1\&,2\right ]\right )}{5 \sqrt {23}}dK[3]+\exp \left (x \text {Root}\left [\text {$\#$1}^3-2 \text {$\#$1}^2+5 \text {$\#$1}+1\&,2\right ]\right ) \int _1^x-\frac {i \exp \left (\text {Root}\left [\text {$\#$1}^3-2 \text {$\#$1}^2+5 \text {$\#$1}+1\&,3\right ] K[2]+\text {Root}\left [\text {$\#$1}^3-2 \text {$\#$1}^2+5 \text {$\#$1}+1\&,1\right ] K[2]-K[2]\right ) \left (\text {Root}\left [\text {$\#$1}^3-2 \text {$\#$1}^2+5 \text {$\#$1}+1\&,1\right ]-\text {Root}\left [\text {$\#$1}^3-2 \text {$\#$1}^2+5 \text {$\#$1}+1\&,3\right ]\right )}{5 \sqrt {23}}dK[2]+\exp \left (x \text {Root}\left [\text {$\#$1}^3-2 \text {$\#$1}^2+5 \text {$\#$1}+1\&,1\right ]\right ) \int _1^x\frac {i \exp \left (\text {Root}\left [\text {$\#$1}^3-2 \text {$\#$1}^2+5 \text {$\#$1}+1\&,3\right ] K[1]+\text {Root}\left [\text {$\#$1}^3-2 \text {$\#$1}^2+5 \text {$\#$1}+1\&,2\right ] K[1]-K[1]\right ) \left (\text {Root}\left [\text {$\#$1}^3-2 \text {$\#$1}^2+5 \text {$\#$1}+1\&,2\right ]-\text {Root}\left [\text {$\#$1}^3-2 \text {$\#$1}^2+5 \text {$\#$1}+1\&,3\right ]\right )}{5 \sqrt {23}}dK[1]+c_1 \exp \left (x \text {Root}\left [\text {$\#$1}^3-2 \text {$\#$1}^2+5 \text {$\#$1}+1\&,1\right ]\right )+c_2 \exp \left (x \text {Root}\left [\text {$\#$1}^3-2 \text {$\#$1}^2+5 \text {$\#$1}+1\&,2\right ]\right )+c_3 \exp \left (x \text {Root}\left [\text {$\#$1}^3-2 \text {$\#$1}^2+5 \text {$\#$1}+1\&,3\right ]\right ) \]