74.1.9 problem 15

Internal problem ID [15789]
Book : INTRODUCTORY DIFFERENTIAL EQUATIONS. Martha L. Abell, James P. Braselton. Fourth edition 2014. ElScAe. 2014
Section : Chapter 1. Introduction to Differential Equations. Exercises 1.1, page 10
Problem number : 15
Date solved : Tuesday, January 28, 2025 at 08:07:14 AM
CAS classification : [[_homogeneous, `class A`], _rational, [_Abel, `2nd type`, `class A`]]

\begin{align*} 2 x -y-y^{\prime } y&=0 \end{align*}

Solution by Maple

Time used: 1.958 (sec). Leaf size: 1029

dsolve((2*x-y(x))-y(x)*diff(y(x),x)=0,y(x), singsol=all)
 
\begin{align*} y &= x \left (-1+\frac {\left (8 c_{1}^{3} x^{3}+4 \sqrt {4 c_{1}^{3} x^{3}+1}+4\right )^{{1}/{3}}}{2 c_{1} x}+\frac {2 c_{1} x}{\left (8 c_{1}^{3} x^{3}+4 \sqrt {4 c_{1}^{3} x^{3}+1}+4\right )^{{1}/{3}}}\right ) \\ y &= \frac {4 c_{1}^{2} x^{2}-2 c_{1} x \left (8 c_{1}^{3} x^{3}+4 \sqrt {4 c_{1}^{3} x^{3}+1}+4\right )^{{1}/{3}}+\left (8 c_{1}^{3} x^{3}+4 \sqrt {4 c_{1}^{3} x^{3}+1}+4\right )^{{2}/{3}}}{2 c_{1} \left (8 c_{1}^{3} x^{3}+4 \sqrt {4 c_{1}^{3} x^{3}+1}+4\right )^{{1}/{3}}} \\ y &= \frac {4 c_{1}^{2} x^{2}-2 c_{1} x \left (8 c_{1}^{3} x^{3}+4 \sqrt {4 c_{1}^{3} x^{3}+1}+4\right )^{{1}/{3}}+\left (8 c_{1}^{3} x^{3}+4 \sqrt {4 c_{1}^{3} x^{3}+1}+4\right )^{{2}/{3}}}{2 c_{1} \left (8 c_{1}^{3} x^{3}+4 \sqrt {4 c_{1}^{3} x^{3}+1}+4\right )^{{1}/{3}}} \\ y &= \frac {4 i \sqrt {3}\, c_{1}^{2} x^{2}-i \sqrt {3}\, \left (8 c_{1}^{3} x^{3}+4 \sqrt {4 c_{1}^{3} x^{3}+1}+4\right )^{{2}/{3}}-4 c_{1}^{2} x^{2}-4 c_{1} x \left (8 c_{1}^{3} x^{3}+4 \sqrt {4 c_{1}^{3} x^{3}+1}+4\right )^{{1}/{3}}-\left (8 c_{1}^{3} x^{3}+4 \sqrt {4 c_{1}^{3} x^{3}+1}+4\right )^{{2}/{3}}}{4 c_{1} \left (8 c_{1}^{3} x^{3}+4 \sqrt {4 c_{1}^{3} x^{3}+1}+4\right )^{{1}/{3}}} \\ y &= \frac {\left (i \sqrt {3}-1\right ) \left (8 c_{1}^{3} x^{3}+4 \sqrt {4 c_{1}^{3} x^{3}+1}+4\right )^{{2}/{3}}-4 x c_{1} \left (i x c_{1} \sqrt {3}+c_{1} x +\left (8 c_{1}^{3} x^{3}+4 \sqrt {4 c_{1}^{3} x^{3}+1}+4\right )^{{1}/{3}}\right )}{4 \left (8 c_{1}^{3} x^{3}+4 \sqrt {4 c_{1}^{3} x^{3}+1}+4\right )^{{1}/{3}} c_{1}} \\ y &= \frac {4 i \sqrt {3}\, c_{1}^{2} x^{2}-i \sqrt {3}\, \left (8 c_{1}^{3} x^{3}+4 \sqrt {4 c_{1}^{3} x^{3}+1}+4\right )^{{2}/{3}}-4 c_{1}^{2} x^{2}-4 c_{1} x \left (8 c_{1}^{3} x^{3}+4 \sqrt {4 c_{1}^{3} x^{3}+1}+4\right )^{{1}/{3}}-\left (8 c_{1}^{3} x^{3}+4 \sqrt {4 c_{1}^{3} x^{3}+1}+4\right )^{{2}/{3}}}{4 c_{1} \left (8 c_{1}^{3} x^{3}+4 \sqrt {4 c_{1}^{3} x^{3}+1}+4\right )^{{1}/{3}}} \\ y &= \frac {\left (i \sqrt {3}-1\right ) \left (8 c_{1}^{3} x^{3}+4 \sqrt {4 c_{1}^{3} x^{3}+1}+4\right )^{{2}/{3}}-4 x c_{1} \left (i x c_{1} \sqrt {3}+c_{1} x +\left (8 c_{1}^{3} x^{3}+4 \sqrt {4 c_{1}^{3} x^{3}+1}+4\right )^{{1}/{3}}\right )}{4 \left (8 c_{1}^{3} x^{3}+4 \sqrt {4 c_{1}^{3} x^{3}+1}+4\right )^{{1}/{3}} c_{1}} \\ y &= \frac {4 i \sqrt {3}\, c_{1}^{2} x^{2}-i \sqrt {3}\, \left (8 c_{1}^{3} x^{3}+4 \sqrt {4 c_{1}^{3} x^{3}+1}+4\right )^{{2}/{3}}-4 c_{1}^{2} x^{2}-4 c_{1} x \left (8 c_{1}^{3} x^{3}+4 \sqrt {4 c_{1}^{3} x^{3}+1}+4\right )^{{1}/{3}}-\left (8 c_{1}^{3} x^{3}+4 \sqrt {4 c_{1}^{3} x^{3}+1}+4\right )^{{2}/{3}}}{4 c_{1} \left (8 c_{1}^{3} x^{3}+4 \sqrt {4 c_{1}^{3} x^{3}+1}+4\right )^{{1}/{3}}} \\ y &= \frac {\left (i \sqrt {3}-1\right ) \left (8 c_{1}^{3} x^{3}+4 \sqrt {4 c_{1}^{3} x^{3}+1}+4\right )^{{2}/{3}}-4 x c_{1} \left (i x c_{1} \sqrt {3}+c_{1} x +\left (8 c_{1}^{3} x^{3}+4 \sqrt {4 c_{1}^{3} x^{3}+1}+4\right )^{{1}/{3}}\right )}{4 \left (8 c_{1}^{3} x^{3}+4 \sqrt {4 c_{1}^{3} x^{3}+1}+4\right )^{{1}/{3}} c_{1}} \\ \end{align*}

Solution by Mathematica

Time used: 0.035 (sec). Leaf size: 38

DSolve[(2*x-y[x])-y[x]*D[y[x],x]==0,y[x],x,IncludeSingularSolutions -> True]
 
\[ \text {Solve}\left [\int _1^{\frac {y(x)}{x}}\frac {K[1]}{(K[1]-1) (K[1]+2)}dK[1]=-\log (x)+c_1,y(x)\right ] \]