73.15.60 problem 22.12 (e)

Internal problem ID [15412]
Book : Ordinary Differential Equations. An introduction to the fundamentals. Kenneth B. Howell. second edition. CRC Press. FL, USA. 2020
Section : Chapter 22. Method of undetermined coefficients. Additional exercises page 412
Problem number : 22.12 (e)
Date solved : Thursday, March 13, 2025 at 06:02:04 AM
CAS classification : [[_3rd_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y&=x^{2} \end{align*}

Maple. Time used: 0.004 (sec). Leaf size: 25
ode:=diff(diff(diff(y(x),x),x),x)-diff(diff(y(x),x),x)+diff(y(x),x)-y(x) = x^2; 
dsolve(ode,y(x), singsol=all);
 
\[ y = -x^{2}-2 x +\cos \left (x \right ) c_{1} +{\mathrm e}^{x} c_{2} +c_{3} \sin \left (x \right ) \]
Mathematica. Time used: 0.005 (sec). Leaf size: 30
ode=D[y[x],{x,3}]-D[y[x],{x,2}]+D[y[x],x]-y[x]==x^2; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to -x^2-2 x+c_3 e^x+c_1 \cos (x)+c_2 \sin (x) \]
Sympy. Time used: 0.148 (sec). Leaf size: 24
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x**2 - y(x) + Derivative(y(x), x) - Derivative(y(x), (x, 2)) + Derivative(y(x), (x, 3)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} e^{x} + C_{2} \sin {\left (x \right )} + C_{3} \cos {\left (x \right )} - x^{2} - 2 x \]