Internal
problem
ID
[15430]
Book
:
Ordinary
Differential
Equations.
An
introduction
to
the
fundamentals.
Kenneth
B.
Howell.
second
edition.
CRC
Press.
FL,
USA.
2020
Section
:
Chapter
22.
Method
of
undetermined
coefficients.
Additional
exercises
page
412
Problem
number
:
22.15
(e)
Date
solved
:
Thursday, March 13, 2025 at 06:03:19 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=3*x^2*diff(diff(y(x),x),x)-7*x*diff(y(x),x)+3*y(x) = 4*x^3; dsolve(ode,y(x), singsol=all);
ode=3*x^2*D[y[x],{x,2}]-7*x*D[y[x],x]+3*y[x]==4*x^3; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-4*x**3 + 3*x**2*Derivative(y(x), (x, 2)) - 7*x*Derivative(y(x), x) + 3*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)