Internal
problem
ID
[992]
Book
:
Differential
equations
and
linear
algebra,
4th
ed.,
Edwards
and
Penney
Section
:
Section
7.3,
The
eigenvalue
method
for
linear
systems.
Page
395
Problem
number
:
problem
39
Date
solved
:
Monday, January 27, 2025 at 03:22:46 AM
CAS
classification
:
system_of_ODEs
✓ Solution by Maple
Time used: 0.015 (sec). Leaf size: 60
dsolve([diff(x__1(t),t)=-2*x__1(t)+0*x__2(t)+0*x__3(t)+9*x__4(t),diff(x__2(t),t)=4*x__1(t)+2*x__2(t)+0*x__3(t)-10*x__4(t),diff(x__3(t),t)=0*x__1(t)+0*x__2(t)-1*x__3(t)+8*x__4(t),diff(x__4(t),t)=0*x__1(t)+0*x__2(t)+0*x__3(t)+1*x__4(t)],singsol=all)
✓ Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 103
DSolve[{D[ x1[t],t]==-2*x1[t]+0*x2[t]+0*x3[t]+9*x4[t],D[ x2[t],t]==4*x1[t]+2*x2[t]+0*x3[t]-10*x4[t],D[ x3[t],t]==0*x1[t]+0*x2[t]-1*x3[t]+8*x4[t],D[ x4[t],t]==0*x1[t]+0*x2[t]+0*x3[t]+1*x4[t]},{x1[t],x2[t],x3[t],x4[t]},t,IncludeSingularSolutions -> True]