73.17.10 problem 10

Internal problem ID [15465]
Book : Ordinary Differential Equations. An introduction to the fundamentals. Kenneth B. Howell. second edition. CRC Press. FL, USA. 2020
Section : Chapter 25. Review exercises for part III. page 447
Problem number : 10
Date solved : Thursday, March 13, 2025 at 06:04:42 AM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} y^{\prime \prime }+3 y&=0 \end{align*}

Maple. Time used: 0.001 (sec). Leaf size: 21
ode:=diff(diff(y(x),x),x)+3*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_{1} \sin \left (\sqrt {3}\, x \right )+c_{2} \cos \left (\sqrt {3}\, x \right ) \]
Mathematica. Time used: 0.016 (sec). Leaf size: 28
ode=D[y[x],{x,2}]+3*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to c_1 \cos \left (\sqrt {3} x\right )+c_2 \sin \left (\sqrt {3} x\right ) \]
Sympy. Time used: 0.060 (sec). Leaf size: 22
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(3*y(x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} \sin {\left (\sqrt {3} x \right )} + C_{2} \cos {\left (\sqrt {3} x \right )} \]