73.17.15 problem 15

Internal problem ID [15470]
Book : Ordinary Differential Equations. An introduction to the fundamentals. Kenneth B. Howell. second edition. CRC Press. FL, USA. 2020
Section : Chapter 25. Review exercises for part III. page 447
Problem number : 15
Date solved : Thursday, March 13, 2025 at 06:04:51 AM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} y^{\prime \prime }-6 y^{\prime }+25 y&=0 \end{align*}

Maple. Time used: 0.001 (sec). Leaf size: 22
ode:=diff(diff(y(x),x),x)-6*diff(y(x),x)+25*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = {\mathrm e}^{3 x} \left (c_{1} \sin \left (4 x \right )+c_{2} \cos \left (4 x \right )\right ) \]
Mathematica. Time used: 0.02 (sec). Leaf size: 26
ode=D[y[x],{x,2}]-6*D[y[x],x]+25*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to e^{3 x} (c_2 \cos (4 x)+c_1 \sin (4 x)) \]
Sympy. Time used: 0.174 (sec). Leaf size: 20
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(25*y(x) - 6*Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \left (C_{1} \sin {\left (4 x \right )} + C_{2} \cos {\left (4 x \right )}\right ) e^{3 x} \]