74.3.6 problem 6
Internal
problem
ID
[15866]
Book
:
INTRODUCTORY
DIFFERENTIAL
EQUATIONS.
Martha
L.
Abell,
James
P.
Braselton.
Fourth
edition
2014.
ElScAe.
2014
Section
:
Chapter
2.
First
Order
Equations.
Exercises
2.1,
page
32
Problem
number
:
6
Date
solved
:
Tuesday, January 28, 2025 at 08:10:42 AM
CAS
classification
:
[_Riccati]
\begin{align*} y^{\prime }&=4 t^{2}-t y^{2} \end{align*}
With initial conditions
\begin{align*} y \left (2\right )&=1 \end{align*}
✓ Solution by Maple
Time used: 0.301 (sec). Leaf size: 127
dsolve([diff(y(t),t)=4*t^2-t*y(t)^2,y(2) = 1],y(t), singsol=all)
\[
y = -\frac {2 \sqrt {t}\, \left (\left (2 \sqrt {2}\, \operatorname {BesselK}\left (\frac {3}{5}, \frac {16 \sqrt {2}}{5}\right )+\operatorname {BesselK}\left (\frac {2}{5}, \frac {16 \sqrt {2}}{5}\right )\right ) \operatorname {BesselI}\left (-\frac {3}{5}, \frac {4 t^{{5}/{2}}}{5}\right )+\operatorname {BesselK}\left (\frac {3}{5}, \frac {4 t^{{5}/{2}}}{5}\right ) \left (-2 \operatorname {BesselI}\left (-\frac {3}{5}, \frac {16 \sqrt {2}}{5}\right ) \sqrt {2}+\operatorname {BesselI}\left (\frac {2}{5}, \frac {16 \sqrt {2}}{5}\right )\right )\right )}{\left (-2 \sqrt {2}\, \operatorname {BesselK}\left (\frac {3}{5}, \frac {16 \sqrt {2}}{5}\right )-\operatorname {BesselK}\left (\frac {2}{5}, \frac {16 \sqrt {2}}{5}\right )\right ) \operatorname {BesselI}\left (\frac {2}{5}, \frac {4 t^{{5}/{2}}}{5}\right )+\operatorname {BesselK}\left (\frac {2}{5}, \frac {4 t^{{5}/{2}}}{5}\right ) \left (-2 \operatorname {BesselI}\left (-\frac {3}{5}, \frac {16 \sqrt {2}}{5}\right ) \sqrt {2}+\operatorname {BesselI}\left (\frac {2}{5}, \frac {16 \sqrt {2}}{5}\right )\right )}
\]
✓ Solution by Mathematica
Time used: 0.256 (sec). Leaf size: 709
DSolve[{D[y[t],t]==4*t^2-t*y[t]^2,{y[2]==1}},y[t],t,IncludeSingularSolutions -> True]
\[
y(t)\to \frac {-3 t^{5/2} \operatorname {BesselI}\left (\frac {2}{5},\frac {16 \sqrt {2}}{5}\right ) \operatorname {BesselI}\left (\frac {3}{5},\frac {4 t^{5/2}}{5}\right )+4 \sqrt {2} t^{5/2} \operatorname {BesselI}\left (-\frac {3}{5},\frac {16 \sqrt {2}}{5}\right ) \operatorname {BesselI}\left (\frac {3}{5},\frac {4 t^{5/2}}{5}\right )-4 \sqrt {2} t^{5/2} \operatorname {BesselI}\left (\frac {3}{5},\frac {16 \sqrt {2}}{5}\right ) \operatorname {BesselI}\left (\frac {7}{5},\frac {4 t^{5/2}}{5}\right )+3 t^{5/2} \operatorname {BesselI}\left (-\frac {2}{5},\frac {16 \sqrt {2}}{5}\right ) \operatorname {BesselI}\left (\frac {7}{5},\frac {4 t^{5/2}}{5}\right )-4 \sqrt {2} t^{5/2} \operatorname {BesselI}\left (-\frac {7}{5},\frac {16 \sqrt {2}}{5}\right ) \operatorname {BesselI}\left (\frac {7}{5},\frac {4 t^{5/2}}{5}\right )+t^{5/2} \left (4 \sqrt {2} \operatorname {BesselI}\left (-\frac {3}{5},\frac {16 \sqrt {2}}{5}\right )-3 \operatorname {BesselI}\left (\frac {2}{5},\frac {16 \sqrt {2}}{5}\right )+4 \sqrt {2} \operatorname {BesselI}\left (\frac {7}{5},\frac {16 \sqrt {2}}{5}\right )\right ) \operatorname {BesselI}\left (-\frac {7}{5},\frac {4 t^{5/2}}{5}\right )+4 \sqrt {2} t^{5/2} \operatorname {BesselI}\left (\frac {7}{5},\frac {16 \sqrt {2}}{5}\right ) \operatorname {BesselI}\left (\frac {3}{5},\frac {4 t^{5/2}}{5}\right )+t^{5/2} \left (-4 \sqrt {2} \operatorname {BesselI}\left (-\frac {7}{5},\frac {16 \sqrt {2}}{5}\right )+3 \operatorname {BesselI}\left (-\frac {2}{5},\frac {16 \sqrt {2}}{5}\right )-4 \sqrt {2} \operatorname {BesselI}\left (\frac {3}{5},\frac {16 \sqrt {2}}{5}\right )\right ) \operatorname {BesselI}\left (-\frac {3}{5},\frac {4 t^{5/2}}{5}\right )+4 \sqrt {2} \operatorname {BesselI}\left (-\frac {3}{5},\frac {16 \sqrt {2}}{5}\right ) \operatorname {BesselI}\left (-\frac {2}{5},\frac {4 t^{5/2}}{5}\right )+3 \operatorname {BesselI}\left (-\frac {2}{5},\frac {16 \sqrt {2}}{5}\right ) \operatorname {BesselI}\left (\frac {2}{5},\frac {4 t^{5/2}}{5}\right )-4 \sqrt {2} \operatorname {BesselI}\left (-\frac {7}{5},\frac {16 \sqrt {2}}{5}\right ) \operatorname {BesselI}\left (\frac {2}{5},\frac {4 t^{5/2}}{5}\right )+4 \sqrt {2} \operatorname {BesselI}\left (\frac {7}{5},\frac {16 \sqrt {2}}{5}\right ) \operatorname {BesselI}\left (-\frac {2}{5},\frac {4 t^{5/2}}{5}\right )-4 \sqrt {2} \operatorname {BesselI}\left (\frac {3}{5},\frac {16 \sqrt {2}}{5}\right ) \operatorname {BesselI}\left (\frac {2}{5},\frac {4 t^{5/2}}{5}\right )-3 \operatorname {BesselI}\left (\frac {2}{5},\frac {16 \sqrt {2}}{5}\right ) \operatorname {BesselI}\left (-\frac {2}{5},\frac {4 t^{5/2}}{5}\right )}{t^2 \left (\left (4 \sqrt {2} \operatorname {BesselI}\left (-\frac {3}{5},\frac {16 \sqrt {2}}{5}\right )-3 \operatorname {BesselI}\left (\frac {2}{5},\frac {16 \sqrt {2}}{5}\right )+4 \sqrt {2} \operatorname {BesselI}\left (\frac {7}{5},\frac {16 \sqrt {2}}{5}\right )\right ) \operatorname {BesselI}\left (-\frac {2}{5},\frac {4 t^{5/2}}{5}\right )+\left (-4 \sqrt {2} \operatorname {BesselI}\left (-\frac {7}{5},\frac {16 \sqrt {2}}{5}\right )+3 \operatorname {BesselI}\left (-\frac {2}{5},\frac {16 \sqrt {2}}{5}\right )-4 \sqrt {2} \operatorname {BesselI}\left (\frac {3}{5},\frac {16 \sqrt {2}}{5}\right )\right ) \operatorname {BesselI}\left (\frac {2}{5},\frac {4 t^{5/2}}{5}\right )\right )}
\]