74.3.23 problem 18
Internal
problem
ID
[15883]
Book
:
INTRODUCTORY
DIFFERENTIAL
EQUATIONS.
Martha
L.
Abell,
James
P.
Braselton.
Fourth
edition
2014.
ElScAe.
2014
Section
:
Chapter
2.
First
Order
Equations.
Exercises
2.1,
page
32
Problem
number
:
18
Date
solved
:
Tuesday, January 28, 2025 at 08:17:12 AM
CAS
classification
:
[_linear]
\begin{align*} y^{\prime }+y \sec \left (t \right )&=t \end{align*}
With initial conditions
\begin{align*} y \left (0\right )&=0 \end{align*}
✓ Solution by Maple
Time used: 0.195 (sec). Leaf size: 52
dsolve([diff(y(t),t)+y(t)*sec(t)=t,y(0) = 0],y(t), singsol=all)
\[
y = \frac {i \pi ^{2}+12 i t^{2}-48 t \ln \left (1+i {\mathrm e}^{i t}\right )+48 i \operatorname {polylog}\left (2, -i {\mathrm e}^{i t}\right )-48 \operatorname {Catalan}}{24 \sec \left (t \right )+24 \tan \left (t \right )}
\]
✓ Solution by Mathematica
Time used: 3.030 (sec). Leaf size: 813
DSolve[{D[y[t],t]+y[t]*Sec[t]==t,{y[0]==0}},y[t],t,IncludeSingularSolutions -> True]
\[
y(t)\to \frac {e^{-2 \text {arctanh}\left (\tan \left (\frac {t}{2}\right )\right )} \left (-3 i e^{2 \text {arctanh}\left (\tan \left (\frac {t}{2}\right )\right )} \cos ^2\left (\frac {t}{2}\right ) t^3+\frac {3}{2} i e^{2 \text {arctanh}\left (\tan \left (\frac {t}{2}\right )\right )} \sin (t) t^3-12 e^{2 \text {arctanh}\left (\tan \left (\frac {t}{2}\right )\right )} \cos ^2\left (\frac {t}{2}\right ) \log \left (2 \cos \left (\frac {t}{2}\right ) \left (\cos \left (\frac {t}{2}\right )-i \sin \left (\frac {t}{2}\right )\right )\right ) t^2+6 e^{2 \text {arctanh}\left (\tan \left (\frac {t}{2}\right )\right )} \log \left (2 \cos \left (\frac {t}{2}\right ) \left (\cos \left (\frac {t}{2}\right )-i \sin \left (\frac {t}{2}\right )\right )\right ) \sin (t) t^2-12 i \operatorname {PolyLog}\left (2,\frac {1}{2}+\frac {i}{2}\right ) \sin ^2\left (\frac {t}{2}\right ) t+12 i \operatorname {PolyLog}\left (2,\frac {1}{2}-\frac {i}{2}\right ) \sin ^2\left (\frac {t}{2}\right ) t+i \pi ^2 \sin ^2\left (\frac {t}{2}\right ) t+12 i e^{2 \text {arctanh}\left (\tan \left (\frac {t}{2}\right )\right )} \cos ^2\left (\frac {t}{2}\right ) \log \left (i \tan \left (\frac {t}{2}\right )+1\right ) \log \left (\left (-\frac {1}{2}-\frac {i}{2}\right ) \left (\tan \left (\frac {t}{2}\right )-1\right )\right ) t-12 i e^{2 \text {arctanh}\left (\tan \left (\frac {t}{2}\right )\right )} \cos ^2\left (\frac {t}{2}\right ) \log \left (1-i \tan \left (\frac {t}{2}\right )\right ) \log \left (\left (-\frac {1}{2}+\frac {i}{2}\right ) \left (\tan \left (\frac {t}{2}\right )-1\right )\right ) t+12 i e^{2 \text {arctanh}\left (\tan \left (\frac {t}{2}\right )\right )} \cos ^2\left (\frac {t}{2}\right ) \operatorname {PolyLog}\left (2,\frac {1}{2} \left ((1+i) \tan \left (\frac {t}{2}\right )+(1-i)\right )\right ) t-6 i e^{2 \text {arctanh}\left (\tan \left (\frac {t}{2}\right )\right )} \operatorname {PolyLog}(2,i \sin (t)-\cos (t)) (\cos (t)-\sin (t)+1) t-6 i e^{2 \text {arctanh}\left (\tan \left (\frac {t}{2}\right )\right )} \operatorname {PolyLog}\left (2,\frac {1}{2} \left ((1-i) \tan \left (\frac {t}{2}\right )+(1+i)\right )\right ) (\cos (t)-\sin (t)+1) t-6 i e^{2 \text {arctanh}\left (\tan \left (\frac {t}{2}\right )\right )} \log \left (i \tan \left (\frac {t}{2}\right )+1\right ) \log \left (\left (-\frac {1}{2}-\frac {i}{2}\right ) \left (\tan \left (\frac {t}{2}\right )-1\right )\right ) \sin (t) t+6 i e^{2 \text {arctanh}\left (\tan \left (\frac {t}{2}\right )\right )} \log \left (1-i \tan \left (\frac {t}{2}\right )\right ) \log \left (\left (-\frac {1}{2}+\frac {i}{2}\right ) \left (\tan \left (\frac {t}{2}\right )-1\right )\right ) \sin (t) t-6 i e^{2 \text {arctanh}\left (\tan \left (\frac {t}{2}\right )\right )} \operatorname {PolyLog}\left (2,\frac {1}{2} \left ((1+i) \tan \left (\frac {t}{2}\right )+(1-i)\right )\right ) \sin (t) t+6 i \operatorname {PolyLog}\left (2,\frac {1}{2}+\frac {i}{2}\right ) \sin (t) t-6 i \operatorname {PolyLog}\left (2,\frac {1}{2}-\frac {i}{2}\right ) \sin (t) t-\frac {1}{2} i \pi ^2 \sin (t) t+\pi ^2 \log \left (1-i \tan \left (\frac {t}{2}\right )\right )-\pi ^2 \log \left (i \tan \left (\frac {t}{2}\right )+1\right )-12 \log \left (1-i \tan \left (\frac {t}{2}\right )\right ) \operatorname {PolyLog}\left (2,\frac {1}{2}+\frac {i}{2}\right )+12 \log \left (i \tan \left (\frac {t}{2}\right )+1\right ) \operatorname {PolyLog}\left (2,\frac {1}{2}+\frac {i}{2}\right )+12 \log \left (1-i \tan \left (\frac {t}{2}\right )\right ) \operatorname {PolyLog}\left (2,\frac {1}{2}-\frac {i}{2}\right )-12 \log \left (i \tan \left (\frac {t}{2}\right )+1\right ) \operatorname {PolyLog}\left (2,\frac {1}{2}-\frac {i}{2}\right )\right )}{3 \left (\cos (t) t+\sin (t) t-t+2 i \log \left (1-i \tan \left (\frac {t}{2}\right )\right )-2 i \log \left (i \tan \left (\frac {t}{2}\right )+1\right )\right )}
\]