Internal
problem
ID
[15517]
Book
:
Ordinary
Differential
Equations.
An
introduction
to
the
fundamentals.
Kenneth
B.
Howell.
second
edition.
CRC
Press.
FL,
USA.
2020
Section
:
Chapter
27.
Differentiation
and
the
Laplace
transform.
Additional
Exercises.
page
496
Problem
number
:
27.1
(L)
Date
solved
:
Thursday, March 13, 2025 at 06:10:46 AM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
Using Laplace method With initial conditions
ode:=diff(diff(y(t),t),t)+4*diff(y(t),t)+13*y(t) = 4*t+2*exp(2*t)*sin(3*t); ic:=y(0) = 4, D(y)(0) = 3; dsolve([ode,ic],y(t),method='laplace');
ode=D[y[t],{t,2}]+4*D[y[t],t]+13*y[t]==4*t+2*Exp[2*t]*Sin[3*t]; ic={y[0]==4,Derivative[1][y][0] ==3}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(-4*t + 13*y(t) - 2*exp(2*t)*sin(3*t) + 4*Derivative(y(t), t) + Derivative(y(t), (t, 2)),0) ics = {y(0): 4, Subs(Derivative(y(t), t), t, 0): 3} dsolve(ode,func=y(t),ics=ics)