73.19.2 problem 28.6 (b)

Internal problem ID [15521]
Book : Ordinary Differential Equations. An introduction to the fundamentals. Kenneth B. Howell. second edition. CRC Press. FL, USA. 2020
Section : Chapter 28. The inverse Laplace transform. Additional Exercises. page 509
Problem number : 28.6 (b)
Date solved : Thursday, March 13, 2025 at 06:10:50 AM
CAS classification : [[_2nd_order, _linear, _nonhomogeneous]]

\begin{align*} y^{\prime \prime }+9 y&=27 t^{3} \end{align*}

Using Laplace method With initial conditions

\begin{align*} y \left (0\right )&=0\\ y^{\prime }\left (0\right )&=0 \end{align*}

Maple. Time used: 7.902 (sec). Leaf size: 19
ode:=diff(diff(y(t),t),t)+9*y(t) = 27*t^3; 
ic:=y(0) = 0, D(y)(0) = 0; 
dsolve([ode,ic],y(t),method='laplace');
 
\[ y = 3 t^{3}+\frac {2 \sin \left (3 t \right )}{3}-2 t \]
Mathematica. Time used: 0.015 (sec). Leaf size: 22
ode=D[y[t],{t,2}]+9*y[t]==27*t^3; 
ic={y[0]==0,Derivative[1][y][0] ==0}; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\[ y(t)\to 3 t^3-2 t+\frac {2}{3} \sin (3 t) \]
Sympy. Time used: 0.092 (sec). Leaf size: 19
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(-27*t**3 + 9*y(t) + Derivative(y(t), (t, 2)),0) 
ics = {y(0): 0, Subs(Derivative(y(t), t), t, 0): 0} 
dsolve(ode,func=y(t),ics=ics)
 
\[ y{\left (t \right )} = 3 t^{3} - 2 t + \frac {2 \sin {\left (3 t \right )}}{3} \]