Internal
problem
ID
[15524]
Book
:
Ordinary
Differential
Equations.
An
introduction
to
the
fundamentals.
Kenneth
B.
Howell.
second
edition.
CRC
Press.
FL,
USA.
2020
Section
:
Chapter
28.
The
inverse
Laplace
transform.
Additional
Exercises.
page
509
Problem
number
:
28.8
(b)
Date
solved
:
Thursday, March 13, 2025 at 06:10:53 AM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
Using Laplace method With initial conditions
ode:=diff(diff(y(t),t),t)-6*diff(y(t),t)+9*y(t) = exp(3*t)*t^2; ic:=y(0) = 0, D(y)(0) = 0; dsolve([ode,ic],y(t),method='laplace');
ode=D[y[t],{t,2}]-6*D[y[t],t]+9*y[t]==Exp[3*t]*t^2; ic={y[0]==0,Derivative[1][y][0] ==0}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(-t**2*exp(3*t) + 9*y(t) - 6*Derivative(y(t), t) + Derivative(y(t), (t, 2)),0) ics = {y(0): 0, Subs(Derivative(y(t), t), t, 0): 0} dsolve(ode,func=y(t),ics=ics)