Internal
problem
ID
[15539]
Book
:
Ordinary
Differential
Equations.
An
introduction
to
the
fundamentals.
Kenneth
B.
Howell.
second
edition.
CRC
Press.
FL,
USA.
2020
Section
:
Chapter
29.
Convolution.
Additional
Exercises.
page
523
Problem
number
:
29.7
(d)
Date
solved
:
Thursday, March 13, 2025 at 06:11:06 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
Using Laplace method With initial conditions
ode:=diff(diff(y(t),t),t)-6*diff(y(t),t)+9*y(t) = exp(-3*t); ic:=y(0) = 0, D(y)(0) = 0; dsolve([ode,ic],y(t),method='laplace');
ode=D[y[t],{t,2}]-6*D[y[t],t]+9*y[t]==Exp[-3*t]; ic={y[0]==0,Derivative[1][y][0] ==0}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(9*y(t) - 6*Derivative(y(t), t) + Derivative(y(t), (t, 2)) - exp(-3*t),0) ics = {y(0): 0, Subs(Derivative(y(t), t), t, 0): 0} dsolve(ode,func=y(t),ics=ics)