9.6.2 problem problem 2

Internal problem ID [1009]
Book : Differential equations and linear algebra, 4th ed., Edwards and Penney
Section : Section 7.6, Multiple Eigenvalue Solutions. Page 451
Problem number : problem 2
Date solved : Monday, January 27, 2025 at 03:22:54 AM
CAS classification : system_of_ODEs

\begin{align*} \frac {d}{d t}x_{1} \left (t \right )&=3 x_{1} \left (t \right )-x_{2} \left (t \right )\\ \frac {d}{d t}x_{2} \left (t \right )&=x_{1} \left (t \right )+x_{2} \left (t \right ) \end{align*}

Solution by Maple

Time used: 0.013 (sec). Leaf size: 30

dsolve([diff(x__1(t),t)=3*x__1(t)-1*x__2(t),diff(x__2(t),t)=1*x__1(t)+1*x__2(t)],singsol=all)
 
\begin{align*} x_{1} \left (t \right ) &= {\mathrm e}^{2 t} \left (c_2 t +c_1 \right ) \\ x_{2} \left (t \right ) &= {\mathrm e}^{2 t} \left (c_2 t +c_1 -c_2 \right ) \\ \end{align*}

Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 44

DSolve[{D[ x1[t],t]==3*x1[t]-1*x2[t],D[ x2[t],t]==1*x1[t]+1*x2[t]},{x1[t],x2[t]},t,IncludeSingularSolutions -> True]
 
\begin{align*} \text {x1}(t)\to e^{2 t} (c_1 (t+1)-c_2 t) \\ \text {x2}(t)\to e^{2 t} ((c_1-c_2) t+c_2) \\ \end{align*}