Internal
problem
ID
[16038]
Book
:
INTRODUCTORY
DIFFERENTIAL
EQUATIONS.
Martha
L.
Abell,
James
P.
Braselton.
Fourth
edition
2014.
ElScAe.
2014
Section
:
Chapter
2.
First
Order
Equations.
Exercises
2.4,
page
57
Problem
number
:
16
Date
solved
:
Tuesday, January 28, 2025 at 08:28:36 AM
CAS
classification
:
[[_homogeneous, `class G`], _exact, _rational]
\begin{align*} -\frac {1}{y}+\left (\frac {t}{y^{2}}+3 y^{2}\right ) y^{\prime }&=0 \end{align*}
Time used: 0.009 (sec). Leaf size: 16
Time used: 60.146 (sec). Leaf size: 1073
\begin{align*}
y(t)\to \frac {\sqrt {\frac {-8 \sqrt [3]{3} t+\sqrt [3]{2} \left (9 c_1{}^2-\sqrt {768 t^3+81 c_1{}^4}\right ){}^{2/3}}{\sqrt [3]{9 c_1{}^2-\sqrt {768 t^3+81 c_1{}^4}}}}}{2 \sqrt [3]{6}}-\frac {1}{2} \sqrt {\frac {4 \sqrt [3]{\frac {2}{3}} t}{\sqrt [3]{9 c_1{}^2-\sqrt {768 t^3+81 c_1{}^4}}}-\frac {\sqrt [3]{9 c_1{}^2-\sqrt {768 t^3+81 c_1{}^4}}}{\sqrt [3]{2} 3^{2/3}}-\frac {2 \sqrt [3]{6} c_1}{\sqrt {\frac {-8 \sqrt [3]{3} t+\sqrt [3]{2} \left (9 c_1{}^2-\sqrt {768 t^3+81 c_1{}^4}\right ){}^{2/3}}{\sqrt [3]{9 c_1{}^2-\sqrt {768 t^3+81 c_1{}^4}}}}}} \\
y(t)\to \frac {\sqrt {\frac {-8 \sqrt [3]{3} t+\sqrt [3]{2} \left (9 c_1{}^2-\sqrt {768 t^3+81 c_1{}^4}\right ){}^{2/3}}{\sqrt [3]{9 c_1{}^2-\sqrt {768 t^3+81 c_1{}^4}}}}}{2 \sqrt [3]{6}}+\frac {1}{2} \sqrt {\frac {4 \sqrt [3]{\frac {2}{3}} t}{\sqrt [3]{9 c_1{}^2-\sqrt {768 t^3+81 c_1{}^4}}}-\frac {\sqrt [3]{9 c_1{}^2-\sqrt {768 t^3+81 c_1{}^4}}}{\sqrt [3]{2} 3^{2/3}}-\frac {2 \sqrt [3]{6} c_1}{\sqrt {\frac {-8 \sqrt [3]{3} t+\sqrt [3]{2} \left (9 c_1{}^2-\sqrt {768 t^3+81 c_1{}^4}\right ){}^{2/3}}{\sqrt [3]{9 c_1{}^2-\sqrt {768 t^3+81 c_1{}^4}}}}}} \\
y(t)\to -\frac {\sqrt {\frac {-8 \sqrt [3]{3} t+\sqrt [3]{2} \left (9 c_1{}^2-\sqrt {768 t^3+81 c_1{}^4}\right ){}^{2/3}}{\sqrt [3]{9 c_1{}^2-\sqrt {768 t^3+81 c_1{}^4}}}}}{2 \sqrt [3]{6}}-\frac {1}{2} \sqrt {\frac {4 \sqrt [3]{\frac {2}{3}} t}{\sqrt [3]{9 c_1{}^2-\sqrt {768 t^3+81 c_1{}^4}}}-\frac {\sqrt [3]{9 c_1{}^2-\sqrt {768 t^3+81 c_1{}^4}}}{\sqrt [3]{2} 3^{2/3}}+\frac {2 \sqrt [3]{6} c_1}{\sqrt {\frac {-8 \sqrt [3]{3} t+\sqrt [3]{2} \left (9 c_1{}^2-\sqrt {768 t^3+81 c_1{}^4}\right ){}^{2/3}}{\sqrt [3]{9 c_1{}^2-\sqrt {768 t^3+81 c_1{}^4}}}}}} \\
y(t)\to \frac {1}{2} \sqrt {\frac {4 \sqrt [3]{\frac {2}{3}} t}{\sqrt [3]{9 c_1{}^2-\sqrt {768 t^3+81 c_1{}^4}}}-\frac {\sqrt [3]{9 c_1{}^2-\sqrt {768 t^3+81 c_1{}^4}}}{\sqrt [3]{2} 3^{2/3}}+\frac {2 \sqrt [3]{6} c_1}{\sqrt {\frac {-8 \sqrt [3]{3} t+\sqrt [3]{2} \left (9 c_1{}^2-\sqrt {768 t^3+81 c_1{}^4}\right ){}^{2/3}}{\sqrt [3]{9 c_1{}^2-\sqrt {768 t^3+81 c_1{}^4}}}}}}-\frac {\sqrt {\frac {-8 \sqrt [3]{3} t+\sqrt [3]{2} \left (9 c_1{}^2-\sqrt {768 t^3+81 c_1{}^4}\right ){}^{2/3}}{\sqrt [3]{9 c_1{}^2-\sqrt {768 t^3+81 c_1{}^4}}}}}{2 \sqrt [3]{6}} \\
\end{align*}