9.6.9 problem problem 9

Internal problem ID [1016]
Book : Differential equations and linear algebra, 4th ed., Edwards and Penney
Section : Section 7.6, Multiple Eigenvalue Solutions. Page 451
Problem number : problem 9
Date solved : Monday, January 27, 2025 at 03:22:56 AM
CAS classification : system_of_ODEs

\begin{align*} \frac {d}{d t}x_{1} \left (t \right )&=-19 x_{1} \left (t \right )+12 x_{2} \left (t \right )+84 x_{3} \left (t \right )\\ \frac {d}{d t}x_{2} \left (t \right )&=5 x_{2} \left (t \right )\\ \frac {d}{d t}x_{3} \left (t \right )&=-8 x_{1} \left (t \right )+4 x_{2} \left (t \right )+33 x_{3} \left (t \right ) \end{align*}

Solution by Maple

Time used: 0.026 (sec). Leaf size: 51

dsolve([diff(x__1(t),t)=-19*x__1(t)+12*x__2(t)+84*x__3(t),diff(x__2(t),t)=0*x__1(t)+5*x__2(t)+0*x__3(t),diff(x__3(t),t)=-8*x__1(t)+4*x__2(t)+33*x__3(t)],singsol=all)
 
\begin{align*} x_{1} \left (t \right ) &= c_1 \,{\mathrm e}^{5 t}+c_2 \,{\mathrm e}^{9 t} \\ x_{2} \left (t \right ) &= c_3 \,{\mathrm e}^{5 t} \\ x_{3} \left (t \right ) &= \frac {2 c_1 \,{\mathrm e}^{5 t}}{7}+\frac {c_2 \,{\mathrm e}^{9 t}}{3}-\frac {c_3 \,{\mathrm e}^{5 t}}{7} \\ \end{align*}

Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 94

DSolve[{D[ x1[t],t]==-19*x1[t]+12*x2[t]+84*x3[t],D[ x2[t],t]==0*x1[t]+5*x2[t]+0*x3[t],D[ x3[t],t]==-8*x1[t]+4*x2[t]+33*x3[t]},{x1[t],x2[t],x3[t]},t,IncludeSingularSolutions -> True]
 
\begin{align*} \text {x1}(t)\to e^{5 t} \left (c_1 \left (7-6 e^{4 t}\right )+3 (c_2+7 c_3) \left (e^{4 t}-1\right )\right ) \\ \text {x2}(t)\to c_2 e^{5 t} \\ \text {x3}(t)\to e^{5 t} \left (-2 c_1 \left (e^{4 t}-1\right )+c_2 \left (e^{4 t}-1\right )+c_3 \left (7 e^{4 t}-6\right )\right ) \\ \end{align*}