74.1.46 problem 53

Internal problem ID [15747]
Book : INTRODUCTORY DIFFERENTIAL EQUATIONS. Martha L. Abell, James P. Braselton. Fourth edition 2014. ElScAe. 2014
Section : Chapter 1. Introduction to Differential Equations. Exercises 1.1, page 10
Problem number : 53
Date solved : Thursday, March 13, 2025 at 06:17:14 AM
CAS classification : [[_Emden, _Fowler]]

\begin{align*} t^{2} y^{\prime \prime }-12 t y^{\prime }+42 y&=0 \end{align*}

With initial conditions

\begin{align*} y \left (1\right )&=0\\ y^{\prime }\left (1\right )&=-1 \end{align*}

Maple. Time used: 0.022 (sec). Leaf size: 13
ode:=t^2*diff(diff(y(t),t),t)-12*t*diff(y(t),t)+42*y(t) = 0; 
ic:=y(1) = 0, D(y)(1) = -1; 
dsolve([ode,ic],y(t), singsol=all);
 
\[ y = -t^{7}+t^{6} \]
Mathematica. Time used: 0.012 (sec). Leaf size: 13
ode=t^2*D[y[t],{t,2}]-12*t*D[y[t],t]+42*y[t]==0; 
ic={y[1]==0,Derivative[1][y][1]==-1}; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\[ y(t)\to -\left ((t-1) t^6\right ) \]
Sympy. Time used: 0.172 (sec). Leaf size: 8
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(t**2*Derivative(y(t), (t, 2)) - 12*t*Derivative(y(t), t) + 42*y(t),0) 
ics = {y(1): 0, Subs(Derivative(y(t), t), t, 1): -1} 
dsolve(ode,func=y(t),ics=ics)
 
\[ y{\left (t \right )} = t^{6} \left (1 - t\right ) \]