74.8.6 problem 6

Internal problem ID [16142]
Book : INTRODUCTORY DIFFERENTIAL EQUATIONS. Martha L. Abell, James P. Braselton. Fourth edition 2014. ElScAe. 2014
Section : Chapter 2. First Order Equations. Review exercises, page 80
Problem number : 6
Date solved : Tuesday, January 28, 2025 at 08:51:52 AM
CAS classification : [_separable]

\begin{align*} -\frac {1}{x^{5}}+\frac {1}{x^{3}}&=\left (2 y^{4}-6 y^{9}\right ) y^{\prime } \end{align*}

Solution by Maple

Time used: 0.053 (sec). Leaf size: 514

dsolve((-x^(-5)+x^(-3))=(2*y(x)^4-6*y(x)^9)*diff(y(x),x),y(x), singsol=all)
 
\begin{align*} y &= \frac {6^{{4}/{5}} \left (2 x^{5}+\sqrt {-60 c_{1} x^{4}+30 x^{2}-15}\, x^{3}\right )^{{1}/{5}}}{6 x} \\ y &= \frac {6^{{4}/{5}} \left (2 x^{5}-\sqrt {-60 c_{1} x^{4}+30 x^{2}-15}\, x^{3}\right )^{{1}/{5}}}{6 x} \\ y &= -\frac {\left (i \sqrt {10-2 \sqrt {5}}+\sqrt {5}+1\right ) 6^{{4}/{5}} \left (2 x^{5}+\sqrt {-60 c_{1} x^{4}+30 x^{2}-15}\, x^{3}\right )^{{1}/{5}}}{24 x} \\ y &= -\frac {\left (-i \sqrt {10-2 \sqrt {5}}+\sqrt {5}+1\right ) 6^{{4}/{5}} \left (2 x^{5}+\sqrt {-60 c_{1} x^{4}+30 x^{2}-15}\, x^{3}\right )^{{1}/{5}}}{24 x} \\ y &= \frac {\left (-i \sqrt {10+2 \sqrt {5}}+\sqrt {5}-1\right ) 6^{{4}/{5}} \left (2 x^{5}+\sqrt {-60 c_{1} x^{4}+30 x^{2}-15}\, x^{3}\right )^{{1}/{5}}}{24 x} \\ y &= \frac {\left (i \sqrt {10+2 \sqrt {5}}+\sqrt {5}-1\right ) 6^{{4}/{5}} \left (2 x^{5}+\sqrt {-60 c_{1} x^{4}+30 x^{2}-15}\, x^{3}\right )^{{1}/{5}}}{24 x} \\ y &= -\frac {\left (i \sqrt {10-2 \sqrt {5}}+\sqrt {5}+1\right ) 6^{{4}/{5}} \left (2 x^{5}-\sqrt {-60 c_{1} x^{4}+30 x^{2}-15}\, x^{3}\right )^{{1}/{5}}}{24 x} \\ y &= -\frac {\left (-i \sqrt {10-2 \sqrt {5}}+\sqrt {5}+1\right ) 6^{{4}/{5}} \left (2 x^{5}-\sqrt {-60 c_{1} x^{4}+30 x^{2}-15}\, x^{3}\right )^{{1}/{5}}}{24 x} \\ y &= \frac {\left (-i \sqrt {10+2 \sqrt {5}}+\sqrt {5}-1\right ) 6^{{4}/{5}} \left (2 x^{5}-\sqrt {-60 c_{1} x^{4}+30 x^{2}-15}\, x^{3}\right )^{{1}/{5}}}{24 x} \\ y &= \frac {\left (i \sqrt {10+2 \sqrt {5}}+\sqrt {5}-1\right ) 6^{{4}/{5}} \left (2 x^{5}-\sqrt {-60 c_{1} x^{4}+30 x^{2}-15}\, x^{3}\right )^{{1}/{5}}}{24 x} \\ \end{align*}

Solution by Mathematica

Time used: 0.347 (sec). Leaf size: 45

DSolve[(-x^(-5)+x^(-3))==(2*y[x]^4-6*y[x]^9)*D[y[x],x],y[x],x,IncludeSingularSolutions -> True]
 
\[ y(x)\to \text {InverseFunction}\left [\int _1^{\text {$\#$1}}K[1]^4 \left (3 K[1]^5-1\right )dK[1]\&\right ]\left [\frac {2 x^2-1}{8 x^4}+c_1\right ] \]