Internal
problem
ID
[15778]
Book
:
INTRODUCTORY
DIFFERENTIAL
EQUATIONS.
Martha
L.
Abell,
James
P.
Braselton.
Fourth
edition
2014.
ElScAe.
2014
Section
:
Chapter
1.
Introduction
to
Differential
Equations.
Review
exercises,
page
23
Problem
number
:
21
Date
solved
:
Thursday, March 13, 2025 at 06:19:40 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
With initial conditions
ode:=diff(diff(y(t),t),t)+4*y(t) = t; ic:=y(1/4*Pi) = 1, D(y)(1/4*Pi) = 1/16*Pi; dsolve([ode,ic],y(t), singsol=all);
ode=D[y[t],{t,2}]+4*y[t]==t; ic={y[Pi/4]==1,Derivative[1][y][Pi/4]==Pi/16}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(-t + 4*y(t) + Derivative(y(t), (t, 2)),0) ics = {y(pi/4): 1, Subs(Derivative(y(t), t), t, pi/4): pi/16} dsolve(ode,func=y(t),ics=ics)