Internal
problem
ID
[15807]
Book
:
INTRODUCTORY
DIFFERENTIAL
EQUATIONS.
Martha
L.
Abell,
James
P.
Braselton.
Fourth
edition
2014.
ElScAe.
2014
Section
:
Chapter
2.
First
Order
Equations.
Exercises
2.1,
page
32
Problem
number
:
21
Date
solved
:
Thursday, March 13, 2025 at 06:45:03 AM
CAS
classification
:
[_linear]
With initial conditions
ode:=diff(y(t),t)+y(t)/(-t^2+4)^(1/2) = t; ic:=y(0) = 0; dsolve([ode,ic],y(t), singsol=all);
ode=D[y[t],t]+y[t]/Sqrt[4-t^2]==t; ic={y[0]==0}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(-t + Derivative(y(t), t) + y(t)/sqrt(4 - t**2),0) ics = {y(0): 0} dsolve(ode,func=y(t),ics=ics)