74.4.22 problem 22

Internal problem ID [15836]
Book : INTRODUCTORY DIFFERENTIAL EQUATIONS. Martha L. Abell, James P. Braselton. Fourth edition 2014. ElScAe. 2014
Section : Chapter 2. First Order Equations. Exercises 2.2, page 39
Problem number : 22
Date solved : Thursday, March 13, 2025 at 06:48:43 AM
CAS classification : [[_1st_order, `_with_symmetry_[F(x),G(x)*y+H(x)]`]]

\begin{align*} y^{\prime }&=\frac {t^{3}}{y \sqrt {\left (1-y^{2}\right ) \left (t^{4}+9\right )}} \end{align*}

Maple. Time used: 0.006 (sec). Leaf size: 50
ode:=diff(y(t),t) = t^3/y(t)/((1-y(t)^2)*(t^4+9))^(1/2); 
dsolve(ode,y(t), singsol=all);
 
\[ -\left (-\frac {y^{2}}{3}+\int _{}^{t}\frac {\textit {\_a}^{3}}{\sqrt {-\left (\textit {\_a}^{4}+9\right ) \left (-1+y^{2}\right )}}d \textit {\_a} +\frac {1}{3}\right ) \sqrt {y+1}\, \sqrt {y-1}+c_{1} = 0 \]
Mathematica. Time used: 2.894 (sec). Leaf size: 519
ode=D[y[t],t]==t^3/(y[t]*Sqrt[(1-y[t]^2)*(t^4+9)]); 
ic={}; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\begin{align*} y(t)\to -\sqrt {1+\left (\frac {3}{2}\right )^{2/3} \sqrt [3]{-t^4-4 i c_1 \sqrt {t^4+9}-9+4 c_1{}^2}} \\ y(t)\to \sqrt {1+\left (\frac {3}{2}\right )^{2/3} \sqrt [3]{-t^4-4 i c_1 \sqrt {t^4+9}-9+4 c_1{}^2}} \\ y(t)\to -\frac {1}{2} \sqrt {-\sqrt [3]{2} 3^{2/3} \sqrt [3]{-t^4-4 i c_1 \sqrt {t^4+9}-9+4 c_1{}^2}-3 i \sqrt [3]{2} \sqrt [6]{3} \sqrt [3]{-t^4-4 i c_1 \sqrt {t^4+9}-9+4 c_1{}^2}+4} \\ y(t)\to \frac {1}{2} \sqrt {-\sqrt [3]{2} 3^{2/3} \sqrt [3]{-t^4-4 i c_1 \sqrt {t^4+9}-9+4 c_1{}^2}-3 i \sqrt [3]{2} \sqrt [6]{3} \sqrt [3]{-t^4-4 i c_1 \sqrt {t^4+9}-9+4 c_1{}^2}+4} \\ y(t)\to -\frac {1}{2} \sqrt {-\sqrt [3]{2} 3^{2/3} \sqrt [3]{-t^4-4 i c_1 \sqrt {t^4+9}-9+4 c_1{}^2}+3 i \sqrt [3]{2} \sqrt [6]{3} \sqrt [3]{-t^4-4 i c_1 \sqrt {t^4+9}-9+4 c_1{}^2}+4} \\ y(t)\to \frac {1}{2} \sqrt {-\sqrt [3]{2} 3^{2/3} \sqrt [3]{-t^4-4 i c_1 \sqrt {t^4+9}-9+4 c_1{}^2}+3 i \sqrt [3]{2} \sqrt [6]{3} \sqrt [3]{-t^4-4 i c_1 \sqrt {t^4+9}-9+4 c_1{}^2}+4} \\ \end{align*}
Sympy. Time used: 6.765 (sec). Leaf size: 272
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(-t**3/(sqrt((1 - y(t)**2)*(t**4 + 9))*y(t)) + Derivative(y(t), t),0) 
ics = {} 
dsolve(ode,func=y(t),ics=ics)
 
\[ \begin {cases} \left (y{\left (t \right )} + 1\right ) \sqrt {\left (y{\left (t \right )} + 1\right )^{2} - 2 y{\left (t \right )} - 2} - \sqrt {\left (y{\left (t \right )} + 1\right )^{2} - 2 y{\left (t \right )} - 2} & \text {for}\: \frac {1}{\left |{y{\left (t \right )} + 1}\right |} < 1 \wedge \left |{y{\left (t \right )} + 1}\right | < 1 \\\left (y{\left (t \right )} + 1\right )^{2} \sqrt {\left (y{\left (t \right )} + 1\right )^{2} - 2 y{\left (t \right )} - 2} - \left (y{\left (t \right )} + 1\right ) \sqrt {\left (y{\left (t \right )} + 1\right )^{2} - 2 y{\left (t \right )} - 2} & \text {for}\: \frac {1}{\left |{y{\left (t \right )} + 1}\right |} < 1 \vee \left |{y{\left (t \right )} + 1}\right | < 1 \\\left (y{\left (t \right )} + 1\right )^{2} \sqrt {\left (y{\left (t \right )} + 1\right )^{2} - 2 y{\left (t \right )} - 2} {G_{2, 2}^{1, 1}\left (\begin {matrix} 0 & 1 \\0 & -1 \end {matrix} \middle | {y{\left (t \right )} + 1} \right )} + \left (y{\left (t \right )} + 1\right )^{2} \sqrt {\left (y{\left (t \right )} + 1\right )^{2} - 2 y{\left (t \right )} - 2} {G_{2, 2}^{0, 2}\left (\begin {matrix} 0, 1 & \\ & -1, 0 \end {matrix} \middle | {y{\left (t \right )} + 1} \right )} - \left (y{\left (t \right )} + 1\right ) \sqrt {\left (y{\left (t \right )} + 1\right )^{2} - 2 y{\left (t \right )} - 2} {G_{2, 2}^{1, 1}\left (\begin {matrix} 0 & 1 \\0 & -1 \end {matrix} \middle | {y{\left (t \right )} + 1} \right )} - \left (y{\left (t \right )} + 1\right ) \sqrt {\left (y{\left (t \right )} + 1\right )^{2} - 2 y{\left (t \right )} - 2} {G_{2, 2}^{0, 2}\left (\begin {matrix} 0, 1 & \\ & -1, 0 \end {matrix} \middle | {y{\left (t \right )} + 1} \right )} & \text {otherwise} \end {cases} + \frac {\sqrt {- t^{4} y^{2}{\left (t \right )} + t^{4} - 9 y^{2}{\left (t \right )} + 9}}{2 \sqrt {y^{2}{\left (t \right )} - 1}} = C_{1} \]