74.4.61 problem 59

Internal problem ID [15875]
Book : INTRODUCTORY DIFFERENTIAL EQUATIONS. Martha L. Abell, James P. Braselton. Fourth edition 2014. ElScAe. 2014
Section : Chapter 2. First Order Equations. Exercises 2.2, page 39
Problem number : 59
Date solved : Thursday, March 13, 2025 at 06:55:34 AM
CAS classification : [_separable]

\begin{align*} y^{\prime }&=-\frac {y-2}{x -2} \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=0 \end{align*}

Maple. Time used: 0.013 (sec). Leaf size: 12
ode:=diff(y(x),x) = -(y(x)-2)/(x-2); 
ic:=y(0) = 0; 
dsolve([ode,ic],y(x), singsol=all);
 
\[ y = \frac {2 x}{x -2} \]
Mathematica. Time used: 0.03 (sec). Leaf size: 13
ode=D[y[x],x]==-(y[x]-2)/(x-2); 
ic={y[0]==0}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {2 x}{x-2} \]
Sympy. Time used: 0.264 (sec). Leaf size: 8
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(Derivative(y(x), x) + (y(x) - 2)/(x - 2),0) 
ics = {y(0): 0} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {2 x}{x - 2} \]