74.4.65 problem 61 (b)

Internal problem ID [15879]
Book : INTRODUCTORY DIFFERENTIAL EQUATIONS. Martha L. Abell, James P. Braselton. Fourth edition 2014. ElScAe. 2014
Section : Chapter 2. First Order Equations. Exercises 2.2, page 39
Problem number : 61 (b)
Date solved : Thursday, March 13, 2025 at 06:55:47 AM
CAS classification : [_quadrature]

\begin{align*} y^{\prime }&=\left (3 y+1\right )^{4} \end{align*}

Maple. Time used: 0.004 (sec). Leaf size: 116
ode:=diff(y(x),x) = (3*y(x)+1)^4; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \frac {3^{{1}/{3}} \left (-\left (x +c_{1} \right )^{2}\right )^{{1}/{3}}-3 c_{1} -3 x}{9 x +9 c_{1}} \\ y &= \frac {\left (-i 3^{{5}/{6}}-3^{{1}/{3}}\right ) \left (-\left (x +c_{1} \right )^{2}\right )^{{1}/{3}}-6 x -6 c_{1}}{18 x +18 c_{1}} \\ y &= \frac {\left (i 3^{{5}/{6}}-3^{{1}/{3}}\right ) \left (-\left (x +c_{1} \right )^{2}\right )^{{1}/{3}}-6 x -6 c_{1}}{18 x +18 c_{1}} \\ \end{align*}
Mathematica. Time used: 0.916 (sec). Leaf size: 144
ode=D[y[x],x]==(3*y[x]+1)^4; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to -\frac {3 x+\sqrt [3]{3} \sqrt [3]{(x+c_1){}^2}+3 c_1}{9 (x+c_1)} \\ y(x)\to \frac {-6 x+\sqrt [3]{3} \left (1-i \sqrt {3}\right ) \sqrt [3]{(x+c_1){}^2}-6 c_1}{18 (x+c_1)} \\ y(x)\to \frac {-6 x+\sqrt [3]{3} \left (1+i \sqrt {3}\right ) \sqrt [3]{(x+c_1){}^2}-6 c_1}{18 (x+c_1)} \\ y(x)\to -\frac {1}{3} \\ \end{align*}
Sympy. Time used: 2.481 (sec). Leaf size: 173
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-(3*y(x) + 1)**4 + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = - \frac {\sqrt [3]{3} \sqrt [3]{\frac {9 C_{1}}{- C_{1} + x} - \frac {9 x}{- C_{1} + x} + 9 - \frac {1}{- C_{1} + x}}}{18} - \frac {3^{\frac {5}{6}} i \sqrt [3]{\frac {9 C_{1}}{- C_{1} + x} - \frac {9 x}{- C_{1} + x} + 9 - \frac {1}{- C_{1} + x}}}{18} - \frac {1}{3}, \ y{\left (x \right )} = - \frac {\sqrt [3]{3} \sqrt [3]{\frac {9 C_{1}}{- C_{1} + x} - \frac {9 x}{- C_{1} + x} + 9 - \frac {1}{- C_{1} + x}}}{18} + \frac {3^{\frac {5}{6}} i \sqrt [3]{\frac {9 C_{1}}{- C_{1} + x} - \frac {9 x}{- C_{1} + x} + 9 - \frac {1}{- C_{1} + x}}}{18} - \frac {1}{3}, \ y{\left (x \right )} = \frac {\sqrt [3]{3} \sqrt [3]{\frac {9 C_{1}}{- C_{1} + x} - \frac {9 x}{- C_{1} + x} + 9 - \frac {1}{- C_{1} + x}}}{9} - \frac {1}{3}\right ] \]