74.5.25 problem 25

Internal problem ID [15910]
Book : INTRODUCTORY DIFFERENTIAL EQUATIONS. Martha L. Abell, James P. Braselton. Fourth edition 2014. ElScAe. 2014
Section : Chapter 2. First Order Equations. Exercises 2.3, page 49
Problem number : 25
Date solved : Thursday, March 13, 2025 at 06:57:04 AM
CAS classification : [[_linear, `class A`]]

\begin{align*} v^{\prime }+v&={\mathrm e}^{-s} \end{align*}

Maple. Time used: 0.000 (sec). Leaf size: 12
ode:=diff(v(s),s)+v(s) = exp(-s); 
dsolve(ode,v(s), singsol=all);
 
\[ v \left (s \right ) = \left (s +c_{1} \right ) {\mathrm e}^{-s} \]
Mathematica. Time used: 0.051 (sec). Leaf size: 15
ode=D[ v[s],s]+v[s]==Exp[-s]; 
ic={}; 
DSolve[{ode,ic},v[s],s,IncludeSingularSolutions->True]
 
\[ v(s)\to e^{-s} (s+c_1) \]
Sympy. Time used: 0.138 (sec). Leaf size: 8
from sympy import * 
s = symbols("s") 
v = Function("v") 
ode = Eq(v(s) + Derivative(v(s), s) - exp(-s),0) 
ics = {} 
dsolve(ode,func=v(s),ics=ics)
 
\[ v{\left (s \right )} = \left (C_{1} + s\right ) e^{- s} \]