Internal
problem
ID
[16011]
Book
:
INTRODUCTORY
DIFFERENTIAL
EQUATIONS.
Martha
L.
Abell,
James
P.
Braselton.
Fourth
edition
2014.
ElScAe.
2014
Section
:
Chapter
2.
First
Order
Equations.
Exercises
2.5,
page
64
Problem
number
:
13
Date
solved
:
Thursday, March 13, 2025 at 07:13:22 AM
CAS
classification
:
[_separable]
ode:=2*ln(t)-ln(4*y(t)^2)*diff(y(t),t) = 0; dsolve(ode,y(t), singsol=all);
ode=( 2*Log[t])-( Log[4*y[t]^2] )*D[y[t],t]==0; ic={}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(2*log(t) - log(4*y(t)**2)*Derivative(y(t), t),0) ics = {} dsolve(ode,func=y(t),ics=ics)