Internal
problem
ID
[16020]
Book
:
INTRODUCTORY
DIFFERENTIAL
EQUATIONS.
Martha
L.
Abell,
James
P.
Braselton.
Fourth
edition
2014.
ElScAe.
2014
Section
:
Chapter
2.
First
Order
Equations.
Exercises
2.5,
page
64
Problem
number
:
22
Date
solved
:
Thursday, March 13, 2025 at 07:16:42 AM
CAS
classification
:
[[_homogeneous, `class A`], _rational, [_Abel, `2nd type`, `class A`]]
ode:=diff(y(t),t) = (t+4*y(t))/(4*t+y(t)); dsolve(ode,y(t), singsol=all);
ode=D[y[t],t]==(t+4*y[t])/(4*t+y[t]); ic={}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(-(t + 4*y(t))/(4*t + y(t)) + Derivative(y(t), t),0) ics = {} dsolve(ode,func=y(t),ics=ics)