Internal
problem
ID
[16027]
Book
:
INTRODUCTORY
DIFFERENTIAL
EQUATIONS.
Martha
L.
Abell,
James
P.
Braselton.
Fourth
edition
2014.
ElScAe.
2014
Section
:
Chapter
2.
First
Order
Equations.
Exercises
2.5,
page
64
Problem
number
:
29
Date
solved
:
Thursday, March 13, 2025 at 07:19:52 AM
CAS
classification
:
[[_homogeneous, `class A`], _rational, [_Abel, `2nd type`, `class A`]]
ode:=(t^2-y(t)^2)*diff(y(t),t)+y(t)^2+t*y(t) = 0; dsolve(ode,y(t), singsol=all);
ode=(t^2-y[t]^2)*D[y[t],t]+(y[t]^2+t*y[t])==0; ic={}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(t*y(t) + (t**2 - y(t)**2)*Derivative(y(t), t) + y(t)**2,0) ics = {} dsolve(ode,func=y(t),ics=ics)