Internal
problem
ID
[16031]
Book
:
INTRODUCTORY
DIFFERENTIAL
EQUATIONS.
Martha
L.
Abell,
James
P.
Braselton.
Fourth
edition
2014.
ElScAe.
2014
Section
:
Chapter
2.
First
Order
Equations.
Exercises
2.5,
page
64
Problem
number
:
33
Date
solved
:
Thursday, March 13, 2025 at 07:20:18 AM
CAS
classification
:
[_Bernoulli]
With initial conditions
ode:=diff(y(t),t)+2*y(t) = t^2*y(t)^(1/2); ic:=y(0) = 1; dsolve([ode,ic],y(t), singsol=all);
ode=D[y[t],t]+2*y[t]==t^2*Sqrt[y[t]]; ic={y[0]==1}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(-t**2*sqrt(y(t)) + 2*y(t) + Derivative(y(t), t),0) ics = {y(0): 1} dsolve(ode,func=y(t),ics=ics)
NotImplementedError : Initial conditions produced too many solutions for constants