Internal
problem
ID
[16035]
Book
:
INTRODUCTORY
DIFFERENTIAL
EQUATIONS.
Martha
L.
Abell,
James
P.
Braselton.
Fourth
edition
2014.
ElScAe.
2014
Section
:
Chapter
2.
First
Order
Equations.
Exercises
2.5,
page
64
Problem
number
:
37
Date
solved
:
Thursday, March 13, 2025 at 07:22:05 AM
CAS
classification
:
[[_homogeneous, `class A`], _rational, _dAlembert]
With initial conditions
ode:=t*diff(y(t),t)-y(t)-(t^2+y(t)^2)^(1/2) = 0; ic:=y(1) = 0; dsolve([ode,ic],y(t), singsol=all);
ode=t*D[y[t],t]-(y[t]+Sqrt[t^2+y[t]^2])==0; ic={y[1]==0}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(t*Derivative(y(t), t) - sqrt(t**2 + y(t)**2) - y(t),0) ics = {y(1): 0} dsolve(ode,func=y(t),ics=ics)