Internal
problem
ID
[16043]
Book
:
INTRODUCTORY
DIFFERENTIAL
EQUATIONS.
Martha
L.
Abell,
James
P.
Braselton.
Fourth
edition
2014.
ElScAe.
2014
Section
:
Chapter
2.
First
Order
Equations.
Exercises
2.5,
page
64
Problem
number
:
42
(d)
Date
solved
:
Thursday, March 13, 2025 at 07:36:26 AM
CAS
classification
:
[[_homogeneous, `class C`], _rational, [_Abel, `2nd type`, `class A`]]
ode:=2*t+3*y(t)+1+(4*t+6*y(t)+1)*diff(y(t),t) = 0; dsolve(ode,y(t), singsol=all);
ode=(2*t+3*y[t]+1)+(4*t+6*y[t]+1)*D[y[t],t]==0; ic={}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(2*t + (4*t + 6*y(t) + 1)*Derivative(y(t), t) + 3*y(t) + 1,0) ics = {} dsolve(ode,func=y(t),ics=ics)