Internal
problem
ID
[16050]
Book
:
INTRODUCTORY
DIFFERENTIAL
EQUATIONS.
Martha
L.
Abell,
James
P.
Braselton.
Fourth
edition
2014.
ElScAe.
2014
Section
:
Chapter
2.
First
Order
Equations.
Exercises
2.5,
page
64
Problem
number
:
55
Date
solved
:
Thursday, March 13, 2025 at 07:36:42 AM
CAS
classification
:
[[_1st_order, _with_linear_symmetries], _Clairaut]
ode:=1-2*t*diff(y(t),t)+2*y(t) = 1/diff(y(t),t)^2; dsolve(ode,y(t), singsol=all);
ode=1-2*(t*D[y[t],t]-y[t])==1/D[y[t],t]^2; ic={}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(-2*t*Derivative(y(t), t) + 2*y(t) + 1 - 1/Derivative(y(t), t)**2,0) ics = {} dsolve(ode,func=y(t),ics=ics)
Timed Out