74.7.56 problem 61

Internal problem ID [16054]
Book : INTRODUCTORY DIFFERENTIAL EQUATIONS. Martha L. Abell, James P. Braselton. Fourth edition 2014. ElScAe. 2014
Section : Chapter 2. First Order Equations. Exercises 2.5, page 64
Problem number : 61
Date solved : Thursday, March 13, 2025 at 07:37:02 AM
CAS classification : [[_1st_order, _with_linear_symmetries], _dAlembert]

\begin{align*} y&=t \left (2-y^{\prime }\right )+2 {y^{\prime }}^{2}+1 \end{align*}

Maple. Time used: 0.096 (sec). Leaf size: 666
ode:=y(t) = t*(2-diff(y(t),t))+2*diff(y(t),t)^2+1; 
dsolve(ode,y(t), singsol=all);
 
\begin{align*} y &= -\frac {t \left (\frac {t -4}{\left (-3 c_{1} +\sqrt {-t^{3}+9 c_{1}^{2}+12 t^{2}-48 t +64}\right )^{{1}/{3}}}+\left (-3 c_{1} +\sqrt {-t^{3}+9 c_{1}^{2}+12 t^{2}-48 t +64}\right )^{{1}/{3}}-2\right ) \left (\frac {t -4}{\left (-3 c_{1} +\sqrt {-t^{3}+9 c_{1}^{2}+12 t^{2}-48 t +64}\right )^{{1}/{3}}}+\left (-3 c_{1} +\sqrt {-t^{3}+9 c_{1}^{2}+12 t^{2}-48 t +64}\right )^{{1}/{3}}+2\right )}{4}+\frac {\left (\frac {\left (t -4\right )^{2}}{\left (-3 c_{1} +\sqrt {-t^{3}+9 c_{1}^{2}+12 t^{2}-48 t +64}\right )^{{2}/{3}}}+2 t -4+\left (-3 c_{1} +\sqrt {-t^{3}+9 c_{1}^{2}+12 t^{2}-48 t +64}\right )^{{2}/{3}}\right )^{2}}{8}+1 \\ y &= -\frac {\left (1+i \sqrt {3}\right ) \left (t^{3}-6 c_{1} \sqrt {-t^{3}+9 c_{1}^{2}+12 t^{2}-48 t +64}+18 c_{1}^{2}-12 t^{2}+48 t -64\right ) \left (-3 c_{1} +\sqrt {-t^{3}+9 c_{1}^{2}+12 t^{2}-48 t +64}\right )^{{2}/{3}}+12 \left (c_{1} -\frac {\sqrt {-t^{3}+9 c_{1}^{2}+12 t^{2}-48 t +64}}{3}\right ) \left (t^{2}-4 t +28\right ) \left (-3 c_{1} +\sqrt {-t^{3}+9 c_{1}^{2}+12 t^{2}-48 t +64}\right )^{{1}/{3}}+\left (t^{3}-12 t^{2}-36 c_{1}^{2}+12 c_{1} \sqrt {-t^{3}+9 c_{1}^{2}+12 t^{2}-48 t +64}+48 t -64\right ) \left (t -4\right ) \left (i \sqrt {3}-1\right )}{16 \left (-3 c_{1} +\sqrt {-t^{3}+9 c_{1}^{2}+12 t^{2}-48 t +64}\right )^{{4}/{3}}} \\ y &= \frac {\left (t^{3}-6 c_{1} \sqrt {-t^{3}+9 c_{1}^{2}+12 t^{2}-48 t +64}+18 c_{1}^{2}-12 t^{2}+48 t -64\right ) \left (i \sqrt {3}-1\right ) \left (-3 c_{1} +\sqrt {-t^{3}+9 c_{1}^{2}+12 t^{2}-48 t +64}\right )^{{2}/{3}}-12 \left (c_{1} -\frac {\sqrt {-t^{3}+9 c_{1}^{2}+12 t^{2}-48 t +64}}{3}\right ) \left (t^{2}-4 t +28\right ) \left (-3 c_{1} +\sqrt {-t^{3}+9 c_{1}^{2}+12 t^{2}-48 t +64}\right )^{{1}/{3}}+\left (1+i \sqrt {3}\right ) \left (t^{3}-12 t^{2}-36 c_{1}^{2}+12 c_{1} \sqrt {-t^{3}+9 c_{1}^{2}+12 t^{2}-48 t +64}+48 t -64\right ) \left (t -4\right )}{16 \left (-3 c_{1} +\sqrt {-t^{3}+9 c_{1}^{2}+12 t^{2}-48 t +64}\right )^{{4}/{3}}} \\ \end{align*}
Mathematica. Time used: 61.106 (sec). Leaf size: 2369
ode=y[t]==t*(2-D[y[t],t])+(2*D[y[t],t]^2+1); 
ic={}; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\begin{align*} \text {Solution too large to show}\end{align*}

Sympy
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(-t*(2 - Derivative(y(t), t)) + y(t) - 2*Derivative(y(t), t)**2 - 1,0) 
ics = {} 
dsolve(ode,func=y(t),ics=ics)
 
Timed Out