9.7.14 problem problem 14

Internal problem ID [1055]
Book : Differential equations and linear algebra, 4th ed., Edwards and Penney
Section : Chapter 11 Power series methods. Section 11.1 Introduction and Review of power series. Page 615
Problem number : problem 14
Date solved : Monday, January 27, 2025 at 04:32:37 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime }+y&=x \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Solution by Maple

Time used: 0.002 (sec). Leaf size: 49

Order:=6; 
dsolve(diff(y(x),x$2)+y(x)=x,y(x),type='series',x=0);
 
\[ y = \left (1-\frac {1}{2} x^{2}+\frac {1}{24} x^{4}\right ) y \left (0\right )+\left (x -\frac {1}{6} x^{3}+\frac {1}{120} x^{5}\right ) y^{\prime }\left (0\right )+\frac {x^{3}}{6}-\frac {x^{5}}{120}+O\left (x^{6}\right ) \]

Solution by Mathematica

Time used: 0.018 (sec). Leaf size: 56

AsymptoticDSolveValue[D[y[x],{x,2}]+y[x]==x,y[x],{x,0,"6"-1}]
 
\[ y(x)\to -\frac {x^5}{120}+\frac {x^3}{6}+c_2 \left (\frac {x^5}{120}-\frac {x^3}{6}+x\right )+c_1 \left (\frac {x^4}{24}-\frac {x^2}{2}+1\right ) \]