74.15.23 problem 23

Internal problem ID [16462]
Book : INTRODUCTORY DIFFERENTIAL EQUATIONS. Martha L. Abell, James P. Braselton. Fourth edition 2014. ElScAe. 2014
Section : Chapter 4. Higher Order Equations. Exercises 4.7, page 195
Problem number : 23
Date solved : Tuesday, January 28, 2025 at 09:08:27 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} x^{2} y^{\prime \prime }+x y^{\prime }+y&=\frac {1}{x^{2}} \end{align*}

Solution by Maple

Time used: 0.006 (sec). Leaf size: 20

dsolve(x^2*diff(y(x),x$2)+x*diff(y(x),x)+y(x)=1/x^2,y(x), singsol=all)
 
\[ y = c_{2} \sin \left (\ln \left (x \right )\right )+\cos \left (\ln \left (x \right )\right ) c_{1} +\frac {1}{5 x^{2}} \]

Solution by Mathematica

Time used: 0.078 (sec). Leaf size: 59

DSolve[x^2*D[y[x],{x,2}]+x*D[y[x],x]+y[x]==1/x^2,y[x],x,IncludeSingularSolutions -> True]
 
\[ y(x)\to \cos (\log (x)) \int _1^x-\frac {\sin (\log (K[1]))}{K[1]^3}dK[1]+\sin (\log (x)) \int _1^x\frac {\cos (\log (K[2]))}{K[2]^3}dK[2]+c_1 \cos (\log (x))+c_2 \sin (\log (x)) \]