Internal
problem
ID
[16087]
Book
:
INTRODUCTORY
DIFFERENTIAL
EQUATIONS.
Martha
L.
Abell,
James
P.
Braselton.
Fourth
edition
2014.
ElScAe.
2014
Section
:
Chapter
2.
First
Order
Equations.
Review
exercises,
page
80
Problem
number
:
30
Date
solved
:
Thursday, March 13, 2025 at 07:48:46 AM
CAS
classification
:
[[_homogeneous, `class C`], _exact, _rational, [_Abel, `2nd type`, `class A`]]
With initial conditions
ode:=2*x-y(x)-2+(2*y(x)-x)*diff(y(x),x) = 0; ic:=y(0) = 1; dsolve([ode,ic],y(x), singsol=all);
ode=(2*x-y[x]-2)+(2*y[x]-x)*D[y[x],x]==0; ic={y[0]==1}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(2*x + (-x + 2*y(x))*Derivative(y(x), x) - y(x) - 2,0) ics = {y(0): 1} dsolve(ode,func=y(x),ics=ics)