74.8.36 problem 36

Internal problem ID [16093]
Book : INTRODUCTORY DIFFERENTIAL EQUATIONS. Martha L. Abell, James P. Braselton. Fourth edition 2014. ElScAe. 2014
Section : Chapter 2. First Order Equations. Review exercises, page 80
Problem number : 36
Date solved : Thursday, March 13, 2025 at 07:51:06 AM
CAS classification : [[_Riccati, _special]]

\begin{align*} y^{\prime }&=y^{2}-x \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=0 \end{align*}

Maple. Time used: 0.097 (sec). Leaf size: 30
ode:=diff(y(x),x) = y(x)^2-x; 
ic:=y(0) = 0; 
dsolve([ode,ic],y(x), singsol=all);
 
\[ y = \frac {-\sqrt {3}\, \operatorname {AiryAi}\left (1, x\right )-\operatorname {AiryBi}\left (1, x\right )}{\sqrt {3}\, \operatorname {AiryAi}\left (x \right )+\operatorname {AiryBi}\left (x \right )} \]
Mathematica. Time used: 7.3 (sec). Leaf size: 93
ode=D[y[x],x]==y[x]^2-x; 
ic={y[0]==0}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to -\frac {i x^{3/2} \operatorname {BesselJ}\left (-\frac {4}{3},\frac {2}{3} i x^{3/2}\right )-i x^{3/2} \operatorname {BesselJ}\left (\frac {2}{3},\frac {2}{3} i x^{3/2}\right )+\operatorname {BesselJ}\left (-\frac {1}{3},\frac {2}{3} i x^{3/2}\right )}{2 x \operatorname {BesselJ}\left (-\frac {1}{3},\frac {2}{3} i x^{3/2}\right )} \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x - y(x)**2 + Derivative(y(x), x),0) 
ics = {y(0): 0} 
dsolve(ode,func=y(x),ics=ics)
 
TypeError : bad operand type for unary -: list