8.3.2 problem 2

Internal problem ID [678]
Book : Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section : Section 1.4. Separable equations. Page 43
Problem number : 2
Date solved : Tuesday, March 04, 2025 at 11:31:52 AM
CAS classification : [_separable]

\begin{align*} 2 x y^{2}+y^{\prime }&=0 \end{align*}

Maple. Time used: 0.003 (sec). Leaf size: 11
ode:=2*x*y(x)^2+diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {1}{x^{2}+c_1} \]
Mathematica. Time used: 0.108 (sec). Leaf size: 20
ode=2*x*y[x]^2+D[y[x],x] == 0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to \frac {1}{x^2-c_1} \\ y(x)\to 0 \\ \end{align*}
Sympy. Time used: 0.155 (sec). Leaf size: 8
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(2*x*y(x)**2 + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {1}{C_{1} + x^{2}} \]