74.16.11 problem 11

Internal problem ID [16517]
Book : INTRODUCTORY DIFFERENTIAL EQUATIONS. Martha L. Abell, James P. Braselton. Fourth edition 2014. ElScAe. 2014
Section : Chapter 4. Higher Order Equations. Exercises 4.8, page 203
Problem number : 11
Date solved : Tuesday, January 28, 2025 at 09:10:05 AM
CAS classification : [[_2nd_order, _exact, _linear, _homogeneous]]

\begin{align*} \left (-x^{2}+2\right ) y^{\prime \prime }+2 \left (x -1\right ) y^{\prime }+4 y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Solution by Maple

Time used: 0.004 (sec). Leaf size: 59

Order:=6; 
dsolve((2-x^2)*diff(y(x),x$2)+2*(x-1)*diff(y(x),x)+4*y(x)=0,y(x),type='series',x=0);
 
\[ y = \left (1-x^{2}-\frac {1}{3} x^{3}+\frac {1}{6} x^{4}+\frac {1}{15} x^{5}\right ) y \left (0\right )+\left (x +\frac {1}{2} x^{2}-\frac {1}{3} x^{3}-\frac {5}{24} x^{4}-\frac {1}{120} x^{5}\right ) y^{\prime }\left (0\right )+O\left (x^{6}\right ) \]

Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 68

AsymptoticDSolveValue[(2-x^2)*D[y[x],{x,2}]+2*(x-1)*D[y[x],x]+4*y[x]==0,y[x],{x,0,"6"-1}]
 
\[ y(x)\to c_1 \left (\frac {x^5}{15}+\frac {x^4}{6}-\frac {x^3}{3}-x^2+1\right )+c_2 \left (-\frac {x^5}{120}-\frac {5 x^4}{24}-\frac {x^3}{3}+\frac {x^2}{2}+x\right ) \]