74.16.20 problem 22

Internal problem ID [16526]
Book : INTRODUCTORY DIFFERENTIAL EQUATIONS. Martha L. Abell, James P. Braselton. Fourth edition 2014. ElScAe. 2014
Section : Chapter 4. Higher Order Equations. Exercises 4.8, page 203
Problem number : 22
Date solved : Tuesday, January 28, 2025 at 09:10:13 AM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} y^{\prime \prime }+\left (\frac {{y^{\prime }}^{2}}{3}-1\right ) y^{\prime }+y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=1\\ y^{\prime }\left (0\right )&=0 \end{align*}

Solution by Maple

Time used: 0.002 (sec). Leaf size: 16

Order:=6; 
dsolve([diff(y(x),x$2)+(1/3*diff(y(x),x)^2-1)*diff(y(x),x)+y(x)=0,y(0) = 1, D(y)(0) = 0],y(x),type='series',x=0);
 
\[ y = 1-\frac {1}{2} x^{2}-\frac {1}{6} x^{3}+\frac {1}{40} x^{5}+\operatorname {O}\left (x^{6}\right ) \]

Solution by Mathematica

Time used: 0.017 (sec). Leaf size: 26

AsymptoticDSolveValue[{D[y[x],{x,2}]+(1/3*D[y[x],x]^2-1)*D[y[x],x]+y[x]==0,{y[0]==1,Derivative[1][y][0] ==0}},y[x],{x,0,"6"-1}]
 
\[ y(x)\to \frac {x^5}{40}-\frac {x^3}{6}-\frac {x^2}{2}+1 \]