74.10.24 problem 24

Internal problem ID [16150]
Book : INTRODUCTORY DIFFERENTIAL EQUATIONS. Martha L. Abell, James P. Braselton. Fourth edition 2014. ElScAe. 2014
Section : Chapter 4. Higher Order Equations. Exercises 4.2, page 147
Problem number : 24
Date solved : Thursday, March 13, 2025 at 07:53:33 AM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} y^{\prime \prime }-2 y^{\prime }+y&=0 \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=4\\ y^{\prime }\left (0\right )&=0 \end{align*}

Maple. Time used: 0.013 (sec). Leaf size: 11
ode:=diff(diff(y(t),t),t)-2*diff(y(t),t)+y(t) = 0; 
ic:=y(0) = 4, D(y)(0) = 0; 
dsolve([ode,ic],y(t), singsol=all);
 
\[ y = -4 \left (t -1\right ) {\mathrm e}^{t} \]
Mathematica. Time used: 0.012 (sec). Leaf size: 13
ode=D[y[t],{t,2}]-2*D[y[t],t]+y[t]==0; 
ic={y[0]==4,Derivative[1][y][0] ==0}; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\[ y(t)\to -4 e^t (t-1) \]
Sympy. Time used: 0.145 (sec). Leaf size: 10
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(y(t) - 2*Derivative(y(t), t) + Derivative(y(t), (t, 2)),0) 
ics = {y(0): 4, Subs(Derivative(y(t), t), t, 0): 0} 
dsolve(ode,func=y(t),ics=ics)
 
\[ y{\left (t \right )} = \left (4 - 4 t\right ) e^{t} \]