74.17.23 problem 23

Internal problem ID [16554]
Book : INTRODUCTORY DIFFERENTIAL EQUATIONS. Martha L. Abell, James P. Braselton. Fourth edition 2014. ElScAe. 2014
Section : Chapter 4. Higher Order Equations. Exercises 4.9, page 215
Problem number : 23
Date solved : Tuesday, January 28, 2025 at 09:10:42 AM
CAS classification : [_Jacobi]

\begin{align*} x \left (1-x \right ) y^{\prime \prime }+\left (1-2 x \right ) y^{\prime }+2 y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Solution by Maple

Time used: 0.052 (sec). Leaf size: 36

Order:=6; 
dsolve(x*(1-x)*diff(y(x),x$2)+(1-2*x)*diff(y(x),x)+2*y(x)=0,y(x),type='series',x=0);
 
\[ y = \left (\ln \left (x \right ) c_{2} +c_{1} \right ) \left (1-2 x +\operatorname {O}\left (x^{6}\right )\right )+\left (5 x -\frac {3}{2} x^{2}-\frac {2}{3} x^{3}-\frac {5}{12} x^{4}-\frac {3}{10} x^{5}+\operatorname {O}\left (x^{6}\right )\right ) c_{2} \]

Solution by Mathematica

Time used: 0.008 (sec). Leaf size: 55

AsymptoticDSolveValue[x*(1-x)*D[y[x],{x,2}]+(1-2*x)*D[y[x],x]+2*y[x]==0,y[x],{x,0,"6"-1}]
 
\[ y(x)\to c_2 \left (-\frac {3 x^5}{10}-\frac {5 x^4}{12}-\frac {2 x^3}{3}-\frac {3 x^2}{2}+5 x+(1-2 x) \log (x)\right )+c_1 (1-2 x) \]