9.8.2 problem problem 2

Internal problem ID [1067]
Book : Differential equations and linear algebra, 4th ed., Edwards and Penney
Section : Chapter 11 Power series methods. Section 11.2 Power series solutions. Page 624
Problem number : problem 2
Date solved : Monday, January 27, 2025 at 04:32:49 AM
CAS classification : [[_2nd_order, _exact, _linear, _homogeneous]]

\begin{align*} \left (x^{2}+2\right ) y^{\prime \prime }+4 x y^{\prime }+2 y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Solution by Maple

Time used: 0.003 (sec). Leaf size: 39

Order:=6; 
dsolve((x^2+2)*diff(y(x),x$2)+4*x*diff(y(x),x)+2*y(x)=0,y(x),type='series',x=0);
 
\[ y = \left (1-\frac {1}{2} x^{2}+\frac {1}{4} x^{4}\right ) y \left (0\right )+\left (x -\frac {1}{2} x^{3}+\frac {1}{4} x^{5}\right ) y^{\prime }\left (0\right )+O\left (x^{6}\right ) \]

Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 68

AsymptoticDSolveValue[(x^2+2)*D[y[x],{x,2}]+4*D[y[x],x]+2*y[x]==0,y[x],{x,0,"6"-1}]
 
\[ y(x)\to c_1 \left (-\frac {x^5}{30}-\frac {x^4}{12}+\frac {x^3}{3}-\frac {x^2}{2}+1\right )+c_2 \left (-\frac {x^5}{15}-\frac {x^4}{12}+\frac {x^3}{2}-x^2+x\right ) \]