74.11.26 problem 38

Internal problem ID [16197]
Book : INTRODUCTORY DIFFERENTIAL EQUATIONS. Martha L. Abell, James P. Braselton. Fourth edition 2014. ElScAe. 2014
Section : Chapter 4. Higher Order Equations. Exercises 4.3, page 156
Problem number : 38
Date solved : Thursday, March 13, 2025 at 07:56:11 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime }-y^{\prime }-20 y&=-2 \,{\mathrm e}^{t} \end{align*}

Maple. Time used: 0.007 (sec). Leaf size: 25
ode:=diff(diff(y(t),t),t)-diff(y(t),t)-20*y(t) = -2*exp(t); 
dsolve(ode,y(t), singsol=all);
 
\[ y = \frac {\left (10 c_{2} {\mathrm e}^{9 t}+{\mathrm e}^{5 t}+10 c_{1} \right ) {\mathrm e}^{-4 t}}{10} \]
Mathematica. Time used: 0.017 (sec). Leaf size: 29
ode=D[y[t],{t,2}]-D[y[t],t]-20*y[t]==-2*Exp[t]; 
ic={}; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\[ y(t)\to \frac {e^t}{10}+c_1 e^{-4 t}+c_2 e^{5 t} \]
Sympy. Time used: 0.185 (sec). Leaf size: 20
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(-20*y(t) + 2*exp(t) - Derivative(y(t), t) + Derivative(y(t), (t, 2)),0) 
ics = {} 
dsolve(ode,func=y(t),ics=ics)
 
\[ y{\left (t \right )} = C_{1} e^{- 4 t} + C_{2} e^{5 t} + \frac {e^{t}}{10} \]