74.18.44 problem 50

Internal problem ID [16601]
Book : INTRODUCTORY DIFFERENTIAL EQUATIONS. Martha L. Abell, James P. Braselton. Fourth edition 2014. ElScAe. 2014
Section : Chapter 4. Higher Order Equations. Chapter 4 review exercises, page 219
Problem number : 50
Date solved : Tuesday, January 28, 2025 at 09:12:27 AM
CAS classification : [[_2nd_order, _linear, _nonhomogeneous]]

\begin{align*} y^{\prime \prime }-2 y^{\prime }+y&={\mathrm e}^{t} \ln \left (t \right ) \end{align*}

Solution by Maple

Time used: 0.003 (sec). Leaf size: 28

dsolve(diff(y(t),t$2)-2*diff(y(t),t)+y(t)=exp(t)*ln(t),y(t), singsol=all)
 
\[ y = \frac {{\mathrm e}^{t} \left (2 \ln \left (t \right ) t^{2}+4 c_{1} t -3 t^{2}+4 c_{2} \right )}{4} \]

Solution by Mathematica

Time used: 0.020 (sec). Leaf size: 34

DSolve[D[y[t],{t,2}]-2*D[y[t],t]+y[t]==Exp[t]*Log[t],y[t],t,IncludeSingularSolutions -> True]
 
\[ y(t)\to \frac {1}{4} e^t \left (-3 t^2+2 t^2 \log (t)+4 c_2 t+4 c_1\right ) \]