74.11.52 problem 62 (c)

Internal problem ID [16223]
Book : INTRODUCTORY DIFFERENTIAL EQUATIONS. Martha L. Abell, James P. Braselton. Fourth edition 2014. ElScAe. 2014
Section : Chapter 4. Higher Order Equations. Exercises 4.3, page 156
Problem number : 62 (c)
Date solved : Thursday, March 13, 2025 at 07:59:23 AM
CAS classification : [[_linear, `class A`]]

\begin{align*} y^{\prime }-y&={\mathrm e}^{4 t} \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=0 \end{align*}

Maple. Time used: 0.013 (sec). Leaf size: 14
ode:=diff(y(t),t)-y(t) = exp(4*t); 
ic:=y(0) = 0; 
dsolve([ode,ic],y(t), singsol=all);
 
\[ y = \frac {\left ({\mathrm e}^{3 t}-1\right ) {\mathrm e}^{t}}{3} \]
Mathematica. Time used: 0.041 (sec). Leaf size: 19
ode=D[y[t],t]-y[t]==Exp[4*t]; 
ic={y[0]==0}; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\[ y(t)\to \frac {1}{3} e^t \left (e^{3 t}-1\right ) \]
Sympy. Time used: 0.141 (sec). Leaf size: 15
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(-y(t) - exp(4*t) + Derivative(y(t), t),0) 
ics = {y(0): 0} 
dsolve(ode,func=y(t),ics=ics)
 
\[ y{\left (t \right )} = \left (\frac {e^{3 t}}{3} - \frac {1}{3}\right ) e^{t} \]